Advertisement

Cation Channels by Reconstitution of CFOCF1 and by Subunit III of CFO

  • G. Althoff
  • G. Schönknecht
  • H. Lühring
  • E. Apley
  • R. Wagner
  • W. Junge

Abstract

CFO, the channel portion of the ATP-synthase in the thylakoid membrane has a very high proton selectivity and a proton conductivity in the pS-range (1,2,3). Single-channel H+ currents through the membrane part of CFOCF1 have been reported for the ATP-synthase incorporated into lipid bilayers (3). The thylakoid membrane has proved difficult to be inquired by patch pipettes, except, so far, in giant chloroplasts of P. metallica, where a voltage-dependent chloride channel has been detected (4). For a further electrophysiological inquiry of the ATP-synthase we used the strategy of Tank and Miller (5): CFOCT1 and subunit III of CFO were isolated and reconstituted into lipid vesicles which were then fused to form large liposomes suitable for single-channel recordings (Fig. 1). At membrane voltages exceeding 40 mV cation channels were observed which were still sensitive to Venturicidin (as is CFO) but had lost proton selectivity.

Keywords

Thylakoid Membrane Cation Channel Patch Clamp Electrophysiology Large Liposome Subconductance Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lill, H., Althoff, G. & Junge, W. (1987) J. Membrane Biol. 98:69–78CrossRefGoogle Scholar
  2. 2.
    Althoff, G., Lill, H. & Junge, W. (1989) J. Membrane Biol. 108:263–271CrossRefGoogle Scholar
  3. 3.
    Wagner, R., Apley, E. & Hanke, W. (1989) EMBO J. in pressGoogle Scholar
  4. 4.
    Schönknecht, G., Hedrich, R., Junge, W. & Raschke, K. (1988) Nature 336:589–592CrossRefGoogle Scholar
  5. 5.
    Tank, D.W. & Miller, C. (1983) in Single-Channel Recording (Sakmann, B. & Neher, E. ed.) pp. 91–105, Plenum Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Schmidt, G. & Gräber, P. (1985) Biochim. Biophys. Acta 808:46–51CrossRefGoogle Scholar
  7. 7.
    Keller, B.U., Hedrich, R., Vaz, W.L.C. & Criado, M. (1988) Pflügers Arch. 411:94–100PubMedCrossRefGoogle Scholar
  8. 8.
    Hanke, W., Andree, J., Strotmann, J. & Kahle, C. (1989) Europ. Biophys. J. in pressGoogle Scholar
  9. 9.
    Hamill, O.P., Marty, A, Neher, E., Sakmann, B. & Sigworth, F.J. (1981) Pflügers Arch. 391:85–100PubMedCrossRefGoogle Scholar
  10. 10.
    Lill, H. & Junge, W. (1989) FEBS Lett. 244:15–20CrossRefGoogle Scholar
  11. 11.
    Schneider, E. & Altendorf, K. (1984) Proc. natn. Acad. Sci. U.S.A. 81:7279–7283CrossRefGoogle Scholar
  12. 12.
    Senior, A.E. (1988) Physiol. Rev. 68:177–231PubMedGoogle Scholar
  13. 13.
    Junge, W. (1987) Proc. natn. Acad. Sci. U.S.A. 48:7084–7088CrossRefGoogle Scholar
  14. 14.
    Galanis, M., Mattoon, J.R. & Nagley, P. (1989) FEBS Lett. 249:333–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Althoff
    • 1
  • G. Schönknecht
    • 1
  • H. Lühring
    • 1
  • E. Apley
    • 1
  • R. Wagner
    • 1
  • W. Junge
    • 1
  1. 1.BiophysikUniversität OsnabrückOsnabrückWest Germany

Personalised recommendations