Advertisement

Resolution of insitu Interaction Energies between Molecules and the Reaction Center QA Site: Implications for Electron Transfer Function

  • Kurt Warncke
  • P. Leslie Dutton

Abstract

We are interested in identifying the features of the cofactor-protein interaction which allow quinones and other molecules to perform intraprotein electron transfer reactions when bound at the primary quinone, or QA, site of the photosynthetic reaction center protein (RC) of Rhodobacter sphaeroides R26. This requires quantitation of the energetic contributions of specific, non-bonded contacts between cofactor and protein, such as hydrogen bonds and other strong electrostatic interactions. The strengths of these interactions are highly sensitive to the charge state of the conjugate oxidized and reduced forms (see 1), and thus influence the free energy gap for the electron transfer reaction through modulation of the quinone in situ midpoint potential (Em).

Keywords

Electron Transfer Reaction Midpoint Potential Quinone Compound Hexane System Single Hydrogen Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babcock, G.T. and Callahan, P.M. (1983) Biochemistry 22, 2314–2319PubMedCrossRefGoogle Scholar
  2. 2.
    Jencks, W.P. (1975) Adv. Enzvmol. 43, 219–410Google Scholar
  3. 3.
    Warncke, K. and Dutton, P.L. (1989) Proc. Natl. Acad. Sci., (submitted)Google Scholar
  4. 4.
    Schoenfeld, M., Montal, M. and Feher, G. (1980) Biochemistry 19, 1535–1542CrossRefGoogle Scholar
  5. 5.
    Gunner, M.R., Warncke, K., Braun, B.S., Bruce, J.M. and Dutton, P.L. (1989) Biochemistry (submitted)Google Scholar
  6. 6.
    Gunner, M.R., Braun, B.S., Bruce, J.M., and Dutton, P.L. (1985) In: Antennas and Pigments of Photosynthetic Bacteria (M.E. Michel-Beyerle, ed.), Springer-Verlag, New York, 298–305CrossRefGoogle Scholar
  7. 7.
    Michel, H., Epp, O. and Deisenhofer, J. (1986) EMBO J. 5, 2445–2451PubMedGoogle Scholar
  8. 8.
    Feher, G., Isaacson, R.A., Okamura, M.Y. and Lubitz, W. (1985) In: Antennas and Pigments of Photosynthetic Bacteria (M.E. Michel-Beyerle, ed.) Springer-Verlag, New York, 174–189CrossRefGoogle Scholar
  9. 9.
    Trebst, A., Donner, W. and Draeber, W. (1984) Z. Naturforsch. 39c, 405–411Google Scholar
  10. 10.
    Woodbury, N.W.T., Parson, W.W., Gunner, M.R., Prince, R.C. and Dutton, P.L. (1986) Biochim. Biophys. Acta. 851. 6–22PubMedCrossRefGoogle Scholar
  11. 11.
    Gunner, M.R., Robertson, D.E. and Dutton, P.L. (1986) J. Phys. Chem. 90, 3783–3795CrossRefGoogle Scholar
  12. 12.
    Gunner, M.R. and Dutton, P.L. (1989) J. Am. Chem. Soc. 111, 3400–3412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kurt Warncke
    • 1
  • P. Leslie Dutton
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations