Advertisement

Phototrapping of Mono- and Di- Anionic Bacteriopheophytin in the Photoreaction Center of Ectothiorhodospira sp.

  • Ted Mar
  • Gabriel Gingras

Abstract

The photoreductive trapping method (1–3) was used to study electron transfer reactions of the primary electron donor, P, in the photoreaction center of Ectothiorhodospira sp. This photoreaction center contains a tightly bound c-type (four heme) cytochrome (4) which can reduce P+ before it undergoes charge recombination with the reduced primary acceptor. By holding the preparation at low redox potential to insure reduction of the quinones, intermediary reduced acceptors can be photo-trapped. If the lifetime of the trapped state is very long compared with its trapping time, continuous illumination can lead to its trapping in large amounts. The photochemical trapping technique can detect acceptors which are reduced by P with very low quantum yields. Using this method, we found that P can transfer electrons to both bacteriopheophytin molecules (BPh) which can accept either one or two electrons.

Keywords

Difference Spectrum Sodium Dithionite Trapping Time Primary Electron Donor Kinetic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Shuvalov, V.A. & Klimov, V.V. (1976) Biochim. Biophys. Acta 440, 587–599.PubMedCrossRefGoogle Scholar
  2. 2).
    Tiede, D.M., Prince, R.C. & Dutton, P.L. (1976) Biochim. Biophys. Acta 449, 447–469.PubMedCrossRefGoogle Scholar
  3. 3).
    Okamura, M.Y., Issacson, R.A. & Feher, G. (1979) Biochim. Biophys. Acta 546, 394–417.PubMedCrossRefGoogle Scholar
  4. 4).
    Lefebvre, S., Picorel, R., Cloutier, Y. & Gingras, G. (1984) Biochem 23, 5279–5288.CrossRefGoogle Scholar
  5. 5).
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. (1984) J. Mol. Biol. 180, 385–398.PubMedCrossRefGoogle Scholar
  6. 6).
    Chang, C.H., Tiede, D., Tang, J., Smith, U., Norris, J. & Schiffer, M. (1986) FEBS Lett. 205, 82–86.PubMedCrossRefGoogle Scholar
  7. 7).
    Allen, J.P., Feher, G., Yeates, T.D., Komiya, H. & Rees, D.C. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5730–5734.PubMedCrossRefGoogle Scholar
  8. 8).
    Reed, D.W. & Ke, B. (1973) J. Biol. Chem. 247, 3041–3045.Google Scholar
  9. 9).
    Rockley, M.G., Windsor, M.W., Cogdell, R.J.& Parson, W.W. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 2251–2255.PubMedCrossRefGoogle Scholar
  10. 10).
    Kaufmann, K.J. Dutton, P.L., Netzel, T.L., Leigh, J.S. & Rentzepis, P.M. (1975) Science 188, 1301–1304.PubMedCrossRefGoogle Scholar
  11. 11).
    Fajer, J., Brune, D.S., Davis, M.S., Forman, A. & Spaulding, L.D. (1975) Proc. Nat. Acad. Sci. U.S.A. 12, 4956–4960.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ted Mar
    • 1
  • Gabriel Gingras
    • 1
  1. 1.Departement de BiochimieUniversité de MontréalMontréalCanada

Personalised recommendations