Analysis of Phycobilisome and Photosystem I Complexes of Cyanobacteria

  • Donald A. Bryant
  • Erhard Rhiel
  • Robert De Lorimier
  • Jianhui Zhou
  • Veronica L. Stirewalt
  • Gail E. Gasparich
  • James M. Dubbs
  • William Snyder


Phycobilisomes (PBS) are supramolecular, multiprotein complexes which function as the light-harvesting antennae for Photosystem II (PS II) in the cyanobacteria, the chloroplasts of red algae, and the cyanelles of phylogenetically ambiguous flagellates such asCyanophora paradoxa (1). PBS occur as highly ordered arrays on the stromal surfaces of the thylakoids; each is believed to interact with two or more PS II reaction centers. PBS are predominantly composed of phycobiliproteins, a family of water-soluble proteins that carry linear tetrapyrrole chromophores (phycobilins; see 2). Each phycobiliprotein consists of two dissimilar subunits, denoted α and β, each of which carries 1–4 chromophores. The fundamental structural unit of the phycobiliproteins is the (αβ)3 trimer, a torroidal molecule about 11 nm indiameter and 3–3.5 nm in thickness with a central cavity about 3.5 nm in diameter (3, 4). Face-to-face stacking of two trimers produces (αβ)6 hexamers which are 11 × 6 nm. The assembly of larger substructures and PBS themselves requires the participation of a second class of proteins, the so-called “linker polypeptides,” which are absolutely required for the assembly of higher order structures (see below; also see 1, 2). The linker polypeptides probably fill the central cavity of the phycobiliprotein torroids and participate in the tail-to-tail joining of pairs of hexamers.


Transcriptional Unit psaE Gene Linker Polypeptide psaE Product Monocistronic mRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryant, D.A. (1987) in Photosynthetic Picoplankton (Platt, T. and Li, W.K.W., eds.), Canadian Bulletin of Fisheries and Aquatic Sciences, Vol. 214, pp. 423–500, Dept. Fisheries and Oceans, Ottawa, CanadaGoogle Scholar
  2. 2.
    Glazer, A.N. (1985) Ann. Rev. Biophys. Biophys. Chem. 14, 47–77CrossRefGoogle Scholar
  3. 3.
    Bryant, D.A., Glazer, A.N., and Eiserling, F.A. (1976) Arch. Microbiol. 110, 61–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Schirmer, T., Bode, W., and Huber, R. (1987) J. Mol. Biol. 196, 677–695PubMedCrossRefGoogle Scholar
  5. 5.
    Gantt, E. (1988) in Light)Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models (Stevens, S.E.Jr., and Bryant, D.A., eds.), pp. 91–101, Am. Soc. Plant Physiol., RockvilleGoogle Scholar
  6. 6.
    Glazer, A.N. (1989) J. Biol. Chem. 264, 1–4PubMedGoogle Scholar
  7. 7.
    Zuber, H. (1987) in The Light Reactions (Barber, J., ed.), pp. 197–259, Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Bryant, D.A. (1988) in Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models (Stevens, S.E. Jr., and Bryant, D.A., eds.), pp. 62–90, Am. Soc. Paint Physiol., RockvilleGoogle Scholar
  9. 9.
    Gasparich, G.E. (1989) Ph. D. Dissertation, The Pennsylvania State UniversityGoogle Scholar
  10. 10.
    Bryant, D.A., de Lorimier, R., Guglielmi, G., and Stevens, S.E. Jr. (1989) Arch. Microbiol., submittedGoogle Scholar
  11. 11.
    de Lorimier, R., Guglielmi, G., Bryant, D.A., and Stevens, S.E.Jr. (1989) Arch. Microbiol., submittedGoogle Scholar
  12. 12.
    de Lorimier, R., Bryant, D.A., and Stevens, S.E.Jr. (1989) Biochim. Biphys. Acta, submittedGoogle Scholar
  13. 13.
    Maxson, P., Sauer, K., Zhou, J., Bryant, D.A., and Glazer, A.N. (1989) Biochim. Biophys. Acta, in pressGoogle Scholar
  14. 14.
    Ford, R.C., Picot, D., and Garavito, R.M. (1987) EMBO J 6, 1581–1586PubMedGoogle Scholar
  15. 15.
    Ford, R.C. (1989) Nature 337, 510–511CrossRefGoogle Scholar
  16. 16.
    Golbeck, J.H., Mehari, T., Parrett, K., and Ikegami, I. (1988) FEBS Lett. 240, 9–14CrossRefGoogle Scholar
  17. 17.
    Wynn, R.M., Omaha, J., and Malkin, R. (1989) Biochemistry 28, 5554–5560PubMedCrossRefGoogle Scholar
  18. 18.
    Cantrell, A. and Bryant, D.A. (1987) Plant Mol. Biol. 9, 453–468CrossRefGoogle Scholar
  19. 19.
    Rhiel, E., and Bryant, D.A. (1988) in Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models (Stevens, S.E.Jr. and Bryant, D.A., eds.), pp. 320–323, Am. Soc. Plant Physiol., RockvilleGoogle Scholar
  20. 20.
    Hoffman, N.E., Pichersky, E., Malik, V.S., Ko, K., and Cashmore, A.R. (1988) Plant Mol. Biol. 10, 435–455.CrossRefGoogle Scholar
  21. 21.
    Reilly, P., Hulmes, J.D., Pan, Y.-C.E., and Nelson, N. (1988) J. Biol. Chem. 263, 17658–17662PubMedGoogle Scholar
  22. 22.
    Alhadeff, M., Lundell, D.J., and Glazer, A.N. (1988) Arch. Microbiol. 150, 482–488CrossRefGoogle Scholar
  23. 23.
    Munch, S., Ljungberg, U., Steppuhn, J., Schneiderbauer, A., Nechushtai, R., Beyreuther, K., and Hermann, R.G. (1988) Curr. Genet. 14, 511–518PubMedCrossRefGoogle Scholar
  24. 24.
    Okkels, J.S., Jepsen, L.B., Honberg, L.S., Lehmbeck, J., Scheller, H. V., Brandt, P., Hoyer-Hansen, G., Stummann, B., Henningsen, K.W., von Wettstein, D., and Moller, B.L. (1988) FEBS Lett. 237, 108–112PubMedCrossRefGoogle Scholar
  25. 25.
    Franzen, L.-G., Frank, G., Zuber, H., and Rochaix, J.-D. (1989) Plant Mol. Biol. 12, 463–474CrossRefGoogle Scholar
  26. 26.
    Steppuhn, J., Hermans, J., Nechushtai, R., Ljungberg, U., Thummler, F., Lottspeich, F., and Herrmann, R.G. (1988) FEBS Lett. 237, 218–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Donald A. Bryant
    • 1
  • Erhard Rhiel
    • 1
  • Robert De Lorimier
    • 1
  • Jianhui Zhou
    • 1
  • Veronica L. Stirewalt
    • 1
  • Gail E. Gasparich
    • 1
  • James M. Dubbs
    • 1
  • William Snyder
    • 1
  1. 1.Dept. of Molecular and Cell BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations