Advertisement

Temperature Dependence of O2-Oscillation Pattern of Spinach Thylakoids

  • J. Messinger
  • G. Renger

Abstract

Photosynthetic water cleavage into dioxygen and metabolically bound hydrogen in the form of plastohydroquinone takes place within a polypeptide complex referred to as system II (for details see ref.1). It is now widely assumed that a heterodimer of polypeptides D1 and D2 forms the matrix that carries the functional redox groups participating in the overall reaction sequence. Accordingly, this matrix determines the reaction coordinates of all individual redox steps. However, in addition to this protein matrix a number of polypeptides are associated that probably act as regulatory subunits. Furthermore, structural effects of functional relevance could also arise from the interaction of the proteins with the surrounding lipid environment of the membrane. Differential scanning calorimetry measurements (2) indicate, that in spinach thylakoids, five to ten per cent of the polar lipids undergo a phase transition in the temperature range of 10 to 30°C.

Keywords

Differential Scanning Calorimetry Measurement Lipid Phase Fast Phase PSII Membrane Oxygen Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Renger, G. (1987) Angew. Chem. Int. Ed. 26, 643 – 660CrossRefGoogle Scholar
  2. 2).
    Low, P.S., Ort, D.R., Cramer, W.A., Whitmarsch, J. and Martin, B. (1984) Arch.Biochem.Biophys. 231,2, 336–344PubMedCrossRefGoogle Scholar
  3. 3).
    Winget, G.H., Izawa, S. and Good, N.E. (1965) Biochem. Biophys.Res.Commun. 21, 438–443PubMedCrossRefGoogle Scholar
  4. 4).
    Berthold, D.A., Babcock, G.T. and Yocum, C.F. (1981) FEBS Lett. 134, 231–234CrossRefGoogle Scholar
  5. 5).
    Dohnt, G. (1984) Thesis, Technical University BerlinGoogle Scholar
  6. 6).
    Cramer, W.A., Whitmarsh, J. and Low, P.S. (1981) Biochemistry 20, 157–162PubMedCrossRefGoogle Scholar
  7. 7).
    Wydrzynski, T. and Sauer, K. (1980) Biochim.Biophys.Acta 589, 56–70PubMedCrossRefGoogle Scholar
  8. 8).
    Vermaas, W.F.J., Renger, G. and Dohnt, G. (1984) Biochim.Biophys.Acta 764, 194–202CrossRefGoogle Scholar
  9. 9).
    Debus, R.J., Barry, B.A., Babcock, G.T. and McIntosh, L. (1987) Proc. Natl. Acad. Sci. USA 85, 427–430CrossRefGoogle Scholar
  10. 10).
    Renger, G. (1975) in Proceedings of the Third International Congress on Photosynthesis (Avron, M., ed.) Vol. I, pp. 127–144, Elsevier, AmsterdamGoogle Scholar
  11. 11).
    Hanssum, B., Dohnt, G. and Renger, G. (1985) Biochim.Biophys.Acta 806, 210–220CrossRefGoogle Scholar
  12. 12).
    Graeber,P., Witt, H.T. (1974) in Proceedings of the Third International Congress on Photosynthesis (Avron, M., ed.) Vol.II, pp. 951–956Google Scholar
  13. 13).
    Eckert, H.J. and Renger, G. (1988) FEBS Lett. 236, 425–431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. Messinger
    • 1
  • G. Renger
    • 1
  1. 1.Max Volmer Institut für Biophysikalische und Physikalische ChemieTechnische Universität BerlinBerlin 12Germany

Personalised recommendations