The Effect of Na+ on the Activation of Water Oxidation by Ca2+ and Sr2+

  • Jack P. Green
  • Wayne D. Frasch


Washing PSII preparations in 1 M NaCl removes about 1 of the 2–3 bound Ca2+ per Photosystem II reaction center and causes the loss of water oxidation (1). Partial recovery of this activity is specific to the addition of Ca2+ (2) or, less effectively, to Sr2+ (3,4). This salt wash also removes the P17 and P23 proteins from the preparation and it has been hypothesized (4,5) that the loss of Ca2+ results from a decreased affinity of the cation for the P23-less reaction centers. However, the presence of a high affinity (10 µM) and a low affinity (1 mM) Ca2+ binding sites have been observed in P17, P23-depleted PSII preparations (6,7). Alternatively, it has been proposed that the relative proportion of Ca2+ removed from these sites depends on the presence of light or EGTA during the salt wash (1,7). Experiments show that the high affinity Ca2+ binding site is required to form a functional S3 state (8,9) while the low affinity site is involved with photoactivation (10), H2O2-driven S1/S-1 cycling (11) and for electron transfer to Z+ (12).


Reaction Center Divalent Cation Water Oxidation PSII Reaction Center High Affinity Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cammerata, K. V. & Cheniae, G. M. (1987) Plant Physiol. 84, 584–595.Google Scholar
  2. 2.
    Brand, J. J. & Becker, D. W. (1984) J. Bioenerg. Biomemb. 16, 239–249.CrossRefGoogle Scholar
  3. 3.
    Pistorius, E. K. (1983) Eur. J. Biochem. 135, 217–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Ghanotakis, D. F., Babcock, G. T. & Yocum, C. F. (1984) FEBS Lett. 170, 127–130.CrossRefGoogle Scholar
  5. 5.
    Ghanotakis, D. F.,Topper, J. N.,Babcock, G. T. & Yocum, C. F. (1984) FEBS Lett. 170, 169–173.CrossRefGoogle Scholar
  6. 6.
    Boussac, A., Maison-Peteri, B., Vernotte, C. & Etreinne, A.-L. (1985) Biochim. Biophys. Acta. 808, 225–230.CrossRefGoogle Scholar
  7. 7.
    Boussac, A., Maison-Peteri, B., Vernotte, C. & Etreinne, A.-L. (1985) Biochim. Biophys. Acta 808, 231–234.CrossRefGoogle Scholar
  8. 8.
    Boussac, A. & Rutherford, A. W. (1988) Biochemistry 27, 3476–3483.CrossRefGoogle Scholar
  9. 9.
    Ono, T. & Inoue, Y. (1989) Biochim. Biophys. Acta 973, 443–449.CrossRefGoogle Scholar
  10. 10.
    Timura, N. & Cheniae, G. M. (1987) Biochim, Biophys. Acta 890, 179–194.CrossRefGoogle Scholar
  11. 11.
    Frasch, W. D. & Mei, R. (1987) Biochemistry 26, 7321–7325.PubMedCrossRefGoogle Scholar
  12. 12.
    Yerkes, C. T. & Babcock, G. T. (1981) Biochim. Biophys. Acta 634, 19–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Theg, S., Jursinic, P. & Homann, P. H. (1984) Biochim. Biophys. Acta 776, 636–646.Google Scholar
  14. 14.
    Waggoner, C. M., Pecoraro, V. & Yocum, C. F. (1989) FEBS Lett. 244, 237–240.CrossRefGoogle Scholar
  15. 15.
    Bertold, D., Babcock, G. T. & Yocum, C. (1981) FEBS Lett. 134, 231–234.CrossRefGoogle Scholar
  16. 16.
    Cleland, W. W. (1967) Adv. Enzymol. Relat. Areas Mol. Biol. 29, 1–32.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jack P. Green
    • 1
    • 2
  • Wayne D. Frasch
    • 1
    • 2
  1. 1.Department of BiologyUniversity of MichiganAnn ArborUSA
  2. 2.The Center for Early Events in Photosynthesis, Department of BotanyArizona State UniversityTempeUSA

Personalised recommendations