Advertisement

EPR/ENDOR Studies of Plastoquinone Anion Radical in Photosystem II (QA and in Organic Solvents

  • F. Macmillan
  • H. Gleiter
  • G. Renger
  • W. Lubitz

Abstract

The electron acceptors QA and QB in Photosystem II are known to be two specially bound plastoquinone molecules assumed to be linked by a histidine-liganded Fe2+ ion whose function is unknown. EPR/ENDOR spectroscopy (1) can, in principle, be applied to the quinone radical anions formed in the charge separation process, in order to gain information about their electronic structure. Due to the strong magnetic coupling between the semiquinones and the high spin Fe2+, ENDOR spectra are difficult to obtain. The removal of Fe, as shown in the work on bacterial reaction centers (2), removes this magnetic coupling, allowing the investigation of the semiquinone states. Removal of Fe from Photosystem II has already been described (3).

Keywords

Magnetic Coupling ENDOR Spectrum Bacterial Reaction Center Electron Nuclear Double Resonance Charge Separation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurreck, H., Kirste, B., and Lubitz, W. (1988) Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution, VCH Publishers, Weinheim.Google Scholar
  2. 2.
    Debus, R.J., Feher, G., and Okamura, M.Y. (1986) Biochem. 25, 2276–2287.CrossRefGoogle Scholar
  3. 3.
    Klimov, V.V., Dolan, E., Shaw, E.R., and Ke, B. (1980) Proc.Natl.Acad.Sci. 77, 7227–7231PubMedCrossRefGoogle Scholar
  4. 4.
    Berthold, D.A., Babcock, G.T., and Yocum, C.F. (1981) Febs. Letts. 134, 231–234.CrossRefGoogle Scholar
  5. 5.
    Völker, M., Ono, T., Inoue, J., and Renger, G. (1985) Biochim. Biophys. Acta 806, 25–34.CrossRefGoogle Scholar
  6. 6.
    Renger, G. (1976) Biochim. Biophys. Acta 440, 287–300.PubMedCrossRefGoogle Scholar
  7. 7.
    Hales, B.J., and Case, E.E. (1981) Biochim. Biophys. Acta 637, 291–302.CrossRefGoogle Scholar
  8. 8.
    Burghaus, O., Toth-Kirschkat, A., Klette, R., and Möbius, K. (1988) J. Magn. Res. 80, 383–388.Google Scholar
  9. 9.
    Feher, G., Isaacson, R.A., Okamura, M.Y., and Lubitz, W. (1986) Springer Series in Chem.Phys. 42, 174–189.CrossRefGoogle Scholar
  10. 10.
    O’Malley, P.J., Chandrashekar, T.K., and Babcock, G.T. (1986) Springer Series in Chem.Phys. 42, 339–344.CrossRefGoogle Scholar
  11. 11.
    Okamura, M.Y., and Feher, G. (1986) Proc.Natl.Acad.Sci. 83, 8152–8156.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • F. Macmillan
    • 1
  • H. Gleiter
    • 2
  • G. Renger
    • 2
  • W. Lubitz
    • 3
  1. 1.Dept. of Organic ChemistryFree University BerlinGermany
  2. 2.Dept. of Biophysical and Physical ChemistryTechnical University BerlinGermany
  3. 3.Dept. of PhysicsUniversity of StuttgartGermany

Personalised recommendations