Advertisement

Effect of Tetranitromethane on Photosystem II Membranes

  • Satoshi Sano
  • Masaaki Takahashi
  • Kozi Asada

Summary

Photoiodination of D-1 and D-2 proteins were suppressed in tetranitromethane (TNM)-treated photosystera (PS) II membranes, indicating that TNM treatment of PS II membranes nitrated tyrosine (Tyr) residues including Tyr-161 (Yz) of D-1 protein and Tyr-160 (YD) of D-2 protein. EPR spectra at room temperature, which were identified to be signals IIf and IIs, also indicated the nitration of Yz and YD. By TNM treatment (TNM/Chl ratio was 1.0 (mol/mol) or higher), the oxygen evolution was half inhibited, but the DPC-supported DCIP reduction was not affected. TNM completely quenched the long-term delayed luminescence of thylakoids and PSII membranes. Thus, YD of PSII reaction center might be on a mediator for the charge recombination between S2 and the secondary electron acceptors.

Keywords

Oxygen Evolution PSII Reaction Center Hamamatsu Photonic Primary Electron Donor PSII Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Takahashi, Y., Takahashi, M., & Satoh, K. (1986) FEBS Lett. 208, 347–351CrossRefGoogle Scholar
  2. [2]
    Ikeuchi, M. & Inoue, Y. (1987) FEBS Lett. 210, 71–76CrossRefGoogle Scholar
  3. [3]
    Takahashi, M. & Asada, K. (1985) Plant Cell Physiol. 26, 1093–1100Google Scholar
  4. [4]
    Takahashi, Y. & Styring, S. (1987) FEBS Lett. 223, 371–375CrossRefGoogle Scholar
  5. [5]
    Ikeuchi, M. & Inoue, Y. (1988) Plant Cell Physiol. 29, 695–705Google Scholar
  6. [6]
    Debus, R. J., Barry, B. A., Babcock, G. T. & Mcintosh, L. (1988) Proc. Natl. Acad. Sci. USA 85, 427–430PubMedCrossRefGoogle Scholar
  7. [7]
    Debus, R. J., Barry, B. A., Sithole, I., Babcock, G. T. & McIntosh, L. (1988) Biochemistry 27, 9071–9074PubMedCrossRefGoogle Scholar
  8. [8]
    Kuwabara, T. & Murata, N (1982) Plant Cell Physiol. 23, 533–539Google Scholar
  9. [9]
    Yamashita, T. & Bulter, W. L. (1969) Plant Physiol. 44, 435–438PubMedCrossRefGoogle Scholar
  10. [10]
    Hughes, W. L., Jr. & Straessle, R. (1950) J. Am. Chem. Soc. 72, 452–457CrossRefGoogle Scholar
  11. [11]
    Sane, P. V. & Johanningmeier, U (1980) Z. Naturforsch. 35c, 293–297Google Scholar
  12. [12]
    Bruice, T. C., Gregory, M. J. & Walters, S. L. (1968) J. Am. Chem. Soc. 90, 1612–1619CrossRefGoogle Scholar
  13. [13]
    Barry, B. A. & Babcock, G. T. (1987) Proc. Natl. Acad. Sci. USA 84, 7099–7103PubMedCrossRefGoogle Scholar
  14. [14]
    De Paula, J. C., Innes, J. B. & Brudvig, G. W. (1985) Biochemistry 24, 8114–8120PubMedCrossRefGoogle Scholar
  15. [15]
    Rutherford A. W. & Inoue, Y. (1984) FEBS Lett. 165, 163–170CrossRefGoogle Scholar
  16. [16]
    Hideg, È & Demeter, S. Z. (1985) Naturforsch. 40c, 827–831Google Scholar
  17. [17]
    Styring, S. & Rutherford, W. (1987) Biochemistry 26, 2401–2405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Satoshi Sano
    • 1
  • Masaaki Takahashi
    • 2
  • Kozi Asada
    • 1
  1. 1.The Research Institute for Food ScienceKyoto Univ.Uji, Kyoto 611Japan
  2. 2.Dept. of BiologyKonan Univ.Kobe 658Japan

Personalised recommendations