Skip to main content

Using Symbols Computer Algebraic Systems to Derive Formulas Involving Orthogonal Polynomials and Other Special Functions

  • Chapter
Orthogonal Polynomials

Part of the book series: NATO ASI Series ((ASIC,volume 294))

Abstract

It is shown how symbolic computer algebraic systems such as Mathematica, Macsyma, SMP, etc., can be used to derive transformation and expansion formulas for orthogonal polynomials that are expressible in terms of either hypergeometric or basic hypergeometric series. In particular, we demonstrate how Mathematica can be used to apply transformation formulas to the Racah and q-Racah polynomials, to derive an indefinite bibasic summation formula, an expansion formula for Laguerre polynomials, Clausen’s formula for the square of hypergeometric series, a q-analogue of a Fields and Wimp expansion formula, and to prove the Askey-Gasper inequality which de Branges used in his proof of the Bieberbach conjecture. We also make some observations and conjectures related to Jensen’s necessary and sufficient conditions for the Riemann Hypothesis to hold.

This material is based upon research supported in part by the National Science Foundation under grant number DMS-8601901.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Askey, ‘Orthogonal polynomials and positivity,’ Studies in Applied Mathematics6, Special Functions and Wave Propagation (D. Ludwig and F. W. J. Olver, eds.), SIAM, Philadelphia, 1970, pp. 64 – 85.

    Google Scholar 

  2. R. Askey and G. Gasper, ‘Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients,’ Proc. Camb. Phil Soc. 70(1971), 243 – 255.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Askey and G. Gasper, ‘Positive Jacobi polynomial sums II,’ Amer. J. Math. 98(1976), 709 – 737.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Askey and G. Gasper, ‘Inequalities for polynomials,’ The Bieberbach Conjecture: Proc. of the Symposium on the Occasion of the Proof(A. Baernstein, D. Drasin, P. Duren, and A. Marden, eds.), Math. Surveys and Monographs 21, Amer. Math. Soc., Providence, R. I., 1986, pp. 7 – 32.

    Google Scholar 

  5. R. Askey and J. Wilson, ‘Some basic hypergeometric polynomials that generalize Jacobi polynomials,’ Memoirs Amer. Math. Soc. 319, Amer. Math. Soc., Providence, R. I., 1985.

    Google Scholar 

  6. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935; reprinted by Stechert-Hafner, New York, 1964.

    Google Scholar 

  7. L. de Branges, ‘A proof of the Bieberbach conjecture,’ Acta Math. 154(1985), 137 – 152.

    Article  MathSciNet  Google Scholar 

  8. L. de Branges, ‘Powers of Riemann mapping functions,’ The Bieberbach Conjecture: Proc. of the Symposium on the Occasion of the Proof(A. Baernstein, et al., eds.), Math. Surveys and Monographs 21, Amer. Math. Soc., Providence, R. I., 1986, pp. 51 – 67.

    Google Scholar 

  9. D. M. Bressoud, ‘The Bailey Lattice: an introduction,’ Ramanujan Revisited(G. E. Andrews et al., eds.), Academic Press, New York, 1988, pp. 57 – 67.

    Google Scholar 

  10. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

    MATH  Google Scholar 

  11. T. Clausen, ‘Ueber die Fälle, wenn die Reihe von der Form… ein Quadrat von der Form… hat,’ J. reine angew. Math. 3(1828), 89 – 91.

    Article  MATH  Google Scholar 

  12. G. Csordas and R. S. Varga, ‘Fourier transforms and the Hermite-Biehler theorem,’ to appear.

    Google Scholar 

  13. G. Csordas and R. S. Varga, ‘Necessary and sufficient conditions and the Riemann Hypothesis,’ to appear.

    Google Scholar 

  14. A. Erdélyi, Higher Transcendental Functions, Vols. I & II, McGraw-Hill, New York, 1953.

    Google Scholar 

  15. J. L. Fields and J. Wimp, ‘Expansions of hypergeometric functions in hypergeometric functions,’ Math. Comp. 15(1961), 390 – 395.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Gangolli, ‘Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters,’ Ann. Inst. H. Poincaré, Sect. B Vol. III, 1967, pp. 121 – 226.

    Google Scholar 

  17. G. Gasper, ‘Projection formulas for orthogonal polynomials of a discrete variable,’ J. Math. Anal. Appl.45 (1974), 176 – 198.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Gasper, ‘Positivity and special functions,’ Theory and Applications of Special Functions(R. Askey, ed.), Academic Press, New York, 1975, pp. 375 – 433.

    Google Scholar 

  19. ] G. Gasper, ‘Positive sums of the classical orthogonal polynomials,’ SIAM J. Math. Anal. 8(1977), 423 – 447.

    Article  MathSciNet  Google Scholar 

  20. G. Gasper, ‘A short proof of an inequality used by de Branges in his proof of the Bieberbach, Robertson and Milin conjectures,’ Complex Variables 7(1986), 45 – 50.

    MathSciNet  MATH  Google Scholar 

  21. G. Gasper, ‘Summation, transformation, and expansion formulas for bibasic series,’ Trans. Amer. Math. Soc. 312(1989), 257 – 277.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Gasper, ‘q-Extensions of Clausen’s formula and of the inequalities used by de Branges in his proof of the Bieberbach, Robertson, and Millin conjectures,’ SIAM J. Math. Anal. 20(1989), 1019 – 1034.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Gasper, ‘Bibasic summation, transformation and expansion formulas, q-analogues of Clausen’s formula, and nonnegative basic hypergeometric series,’ Workshop on q-Series and Partitions (D. Stanton, ed.), IMA Volumes in Mathematics and Its Applications, Springer, Berlin and New York, to appear.

    Google Scholar 

  24. G. Gasper and M. Rahman, ‘Product formulas of Watson, Bailey and Bateman types and positivity of the Poisson kernel for q-Racah polynomials,’ SI AM J. Math. Anal 15(1984), 768 – 789.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Gasper and M. Rahman, ‘An indefinite bibasic summation formula and some quadratic, cubic, and quartic summation and ransformation formulas,’ Canad. J. Math., to appear.

    Google Scholar 

  26. G. Gasper and M. Rahman, ‘A nonterminating q-Clausen formula and some related product formulas,’ SIAM J. Math. Anal. to appear.

    Google Scholar 

  27. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, to appear.

    Google Scholar 

  28. G. Pólya, ‘Über die algebraisch-funktionentheoretischen Untersuchungen von J. L. W. V. Jensen,’ Kgl. Danske Videnskabernes Selskab. Math.-Fys. Medd. 7 (17) (1927), pp. 3–33; reprinted in his Collected Papers, Vol. II, pp. 278–308.

    Google Scholar 

  29. D. B. Sears, ‘On the transformation theory of basic hypergeometric functions,’ Proc. London Math. Soc. (2) 53(1951), 158 – 180.

    Google Scholar 

  30. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

    MATH  Google Scholar 

  31. G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc. Colloq. Publ. 23, 1975.

    Google Scholar 

  32. Verma, ‘Certain expansions of the basic hypergeometric functions,’ Math. Comp. 20(1966), 151 – 157.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gasper, G. (1990). Using Symbols Computer Algebraic Systems to Derive Formulas Involving Orthogonal Polynomials and Other Special Functions. In: Nevai, P. (eds) Orthogonal Polynomials. NATO ASI Series, vol 294. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0501-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0501-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6711-9

  • Online ISBN: 978-94-009-0501-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics