Self Assembly of Bacterio Chlorophyll a and Bacteriopheophytin a in Micellar and Non-Micellar Aqueous Solutions; Application to the Pigment-Protein Organization in Light-Harvesting Complexes and Reaction Centers

  • A. Scherz
  • V. Rosenbach-Belkin
  • J. R. E. Fisher
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 22)

Abstract

While investigating the self assembly of photosynthetic pigments in aqueous solutions, it was found that very large aggregates maintained an equilibrium with monomers. This aggregation is cooperative and can be characterized by two equilibrium constants. The first equilibrium constant (Ka) describes dimer formation and the second one (Kb) describes the formation of larger oligomers. Ka and Kb for bacteriochlorophyll a (Bchla) are 1.5 × 103 M-1 and 2.2 × 106 M-1, respectively. Kb for bacteriopheophytine a (Bphea) is ∼109 M-1. The difference between the spectra of Bchl dimers and large oligomers is insignificant, indicating that the large oligomer consists of repeating dimers which are separated by ∼15Å from each other.

Self assembly of Bphea and Bchla has also been studied in aqueous solutions containing Triton X-100 (TX-100). To calculate the aggregation number and the corresponding equilibrium constant, we have developed a formalism which considers the pigment distribution in micelles of variable size. Application of the theory to Bchla and Bphea shows dimer formation in the micellar domain with Kd = 2.2 × 103 M-1 for Bchla in formamide/water (FW), Kd = 3.9 × 105 M-1 for Bphea in FW and Kd = 7.5 × 104 M-1 for Bphea in water. The photosynthetic pigments seem to have a major effect on the micelle size. In the pigment-free solutions the micelles contain ∼150 molecules of TX-100, while the addition of pigments alters this to 4000–40000 molecules, depending on the system.

Comparison with in vivo pigments suggests that the Bchla self assembly tunes the photosynthetic pigments to the prevailing light conditions and at the same time affects the organization of the polypeptide units within the intercytoplasmic membrane. This mechanism may explain the relationship between pigmentation and polypeptide assembly in light-harvesting complexes and reaction centers in photosynthesis.

Keywords

Photosynthetic Pigment Photosynthetic Bacterium Photosynthetic Reaction Center Micelle Size Pigment Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okamura, M. Y., Feher, G. and Nelson, N. (1982) ‘Reaction Center’, in Govindjee (ed.), Photosynthesis, Energy Conversion by Plants and Bacteria, Academic Press, New York, pp. 221–227.Google Scholar
  2. 2.
    Zuber, H. (1985) ‘Structure and Function of Light-Harvesting-Complexes and their Polypeptides’, Photochem. Photobiol. 42, 821–844.CrossRefGoogle Scholar
  3. 3.
    Cogdell, R. J. and Thornber, J. P. (1980) ‘Light-Harvesting Pigment-Protein Complexes of Purple Photosynthetic Bacteria’, FEBS Lett 122, 1–8.CrossRefGoogle Scholar
  4. 4.
    Sauer, K. and Austin, L. A. (1978) ‘Bacteriochlorophyll-Protein Complexes from the Light-Harvesting Antenna of Photosynthetic Bacteria’, Biochem. 17, 2011–2019.CrossRefGoogle Scholar
  5. 5.
    Rosenbach-Belkin, V., Braun, P., Kovatch, P. and Scherz, A. (1988) ‘Optical Absorption and Circular Dichroism of Bacteriochlorophyll Oligomers in Triton X-100 and in the Light-Harvesting Complex B850; A Comparative Study’, in H. Scheer and S. Schneider (eds.), Photosynthesis Light-Harvesting Systems Organization and Function, Walter de Gruyter, Berlin, New York, pp. 323–337.Google Scholar
  6. 6.
    Wittmershaus, B. P. (1987) ‘Measurements and Kinetic Modeling of Picosecond Time-Resolved Fluorescence from Photosystem I and Chloroplasts’, in J. Biggins (ed.), Progress in Photosynthesis Research; Proceeding of the VIIth International Congress on Photosynthesis, Martinus Nijhoff Publishers, Dodrecht, Vol. I, pp.75–82.Google Scholar
  7. 7.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) ‘Structure of the Protein Subunits in the Photosynthetic Reaction Centre of RhodoPseudomonas viridis at 3Å Resolution’, Nature 318, 618–624.CrossRefGoogle Scholar
  8. 8.
    Michel, H., Weyer, K. A., Gruenberg, H., Dunger, I., Oesterhelt, D. and Lohspeichf, J. (1986) ‘The “Light” and “Medium” Subunits of the Photosynthetic Reaction Centre from Rhodopseudomonas viridis: Isolation of the Genes, Nucleotide and Amino Acid Sequence’, EMBO J. 5, 1149–1158.PubMedGoogle Scholar
  9. 9.
    Chang, H., Tiede, D., Tang, J., Smith, U., Norris, J. R. and Schiffer, M. (1986) ‘Structure of Rhodopseudomonas sphaeroides R-26 Reaction Center’, FEBS Lett. 205, 82.PubMedCrossRefGoogle Scholar
  10. 10.
    Allen, J. P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D. C. (1987) ‘Structure of the Reaction Center form Rhodobacter sphaeroides R-26: The Cofactors’, Proc. Natl. Acad. Sci. USA, 84, 5730–5734.PubMedCrossRefGoogle Scholar
  11. 11.
    Allen, J. P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D. C. (1987) ‘Structure of the Reaction Center from Rhodobacter sphaeroides R-26: The Protein Subunits’, Proc. Natl. Acad. Sci. USA, 84, 6162–6166.PubMedCrossRefGoogle Scholar
  12. 12.
    Scherz, A and Rosenbach-Belkin, V. (1989) ‘Comparative Study of Optical Absorption and Circular Dichroism of Bacteriochlorophyll Oligomers in Triton X-100, the Antenna Pigment B850, and the Primary Donor P-860 of Photosynthetic Bacteria Indicates that all are similar Dimers of Bacteriochlorophyll a’, Proc. Natl. Acad. Sci. USA, 86, 1505–1509.PubMedCrossRefGoogle Scholar
  13. 13.
    Parson, W. W., Warshel, A. and Scherz, A. (1985) ‘Calculation of the Spectroscopic Properties of Bacterial Reaction Centers’, in M. E. Michele-Beyerle (ed.), Antennas and Reaction Centers of Photosynthetic Bacteria, Structure, Interaction and Dynamics, Springer Series in Chemical Physic, Springer-Verlag, Berlin, Vol. 42, pp. 122–130.Google Scholar
  14. 14.
    Knapp, E. W., Scherer, P. O. J. and Fischer, S. F. (1986) ‘Model Studies of Low-Temperature Optical Transitions of Photosynthetic Reaction Centers A-, LD-, CD-, ADMR- and LD-ADMR-spectra for Rhodopseudomonas viridis’, Biochem. Biophys. Acta 852, 295–305.CrossRefGoogle Scholar
  15. 15.
    Parson, W. W. and Warshel, A. (1987) ‘Spectoscopic Properties of Photosynthetic Reaction Centers. 2. Application of the Theory to Rhodopseudomonas viridis’, J. Am. Chem Soc. 109, 6152–6163.CrossRefGoogle Scholar
  16. 16.
    Scherz, A. and Rosenbach-Belkin, V. (1989) ‘The effect of Non-Excitonic Interactions Among the Paired Bacteriochlorophylls on the Qy transition of the Primary Donors in Bacterial Reaction Centers; Model Studies with Epimers’, J. Am. Chem. Soc., in press.Google Scholar
  17. 17.
    Eccles, J. and Honig, B. (1983) ‘Charged Amino Acids as Spectroscopic Determinants for Chlorophyll in vivo’, Proc. Natl. Acad. Sci. USA, 80, 4959–4962.PubMedCrossRefGoogle Scholar
  18. 18.
    Lavorel, J. (1957) ‘Infuence of Concentration on the Absorption Spectrum and the Action Spectrum of Fluorescence of Dye Solutions’, J. Phys. Chem., 61, 1600–1605.CrossRefGoogle Scholar
  19. 19.
    Weber, G. and Teale, F. W. J. (1958) ‘Fluorescence Excitation Spectrum of Organic Compounds in Solution, Part 1.- Systems with Quantum Yield Independent of the Exciting Wavelength’, Trans. Faraday Soc., 54, 640–648.CrossRefGoogle Scholar
  20. 20.
    Ballschmiter, K., Tniesdell, K. and Katz, J. J. (1969) ‘Aggregation of Chlorophyll in Nonpolar Solvents from Molecular Weight Measurements’, Biochimica et Biophysica Acta, 184, 604–613.PubMedGoogle Scholar
  21. 21.
    Katz, J. J. and Hindman, J. C. (1982) ‘Photoprocesses in Chlorophyll Model Systems’, in R. R. Alfano (ed.), Biological Events Probed by Ultrafast Laser Spectroscopy, Academic Press, New York, pp. 119–157.Google Scholar
  22. 22.
    Ballschmiter, K. and Katz, J. J. (1972) ‘Chlorophyll-Chlorophyll and Chlorophyll-Water Interactions in the Solid State’, Biochimica et Biophysica Acta, 256, 307–327.PubMedCrossRefGoogle Scholar
  23. 23.
    Katz, J. J., Shipman, L. L., Cotton, T. M. and Janson, T. R. (1978) ‘Chlorophyll Aggregation: Coordination Interactions in Chlorophyll Monomers, Dimers and Oligomers’, in D. Dolphin (ed.), The Porphyrins, McGraw-Hill, New York, Vol. V, pp. 401–456.Google Scholar
  24. 24.
    Cotton, T. M., Loach, P. A., Katz, J. J. and Ballschmiter, K. (1978) ‘Studies of Chlorophyll-Chlorophyll and Chloropyll-Ligand Interactions by Visible Absorption and Infrared Spectroscopy at Low Temperatures’, Photochem. Photobiol., 27, 735–749.CrossRefGoogle Scholar
  25. 25.
    Katz, J. J. and Ballschmiter, K. (1968) ‘Wechselwirkungen Zwischen Chlorophyll und Wasser’, Angew. Chem., 80, 283–284.CrossRefGoogle Scholar
  26. 26.
    Katz, J. J., Oettmeier, W. and Norris, J. R. (1976) ‘Organization of Antenna and Photo-Reaction Centre Chlorophylls on the Molecular Level’, Phil. Trans. R. Soc. Lond. B. 273, 227–253.CrossRefGoogle Scholar
  27. 27.
    Lutz, M., Robert, B., Zhow, Q., Newmann, J. M., Szponarski, W. and Berger, G. (1988) ‘Protein-Prosthetic Group Interactions in Bacterial Reaction Centers’, in J. Breton and A. Vermeglio (eds.), The Photosynthetic Bacterial Reaction Centers, Structure and Dynamics, NATO ASI Series A: Life Sciences, Plenum Press, New York, Vol. 149, pp. 41–50.Google Scholar
  28. 28.
    Brown, S. B. and Shillcock, M. (1976) ‘Equilibrium and Kinetic Studies of the Aggregation of Porphyrins in Aqueous Solution’, Biochem. J. 153, 279–285.PubMedGoogle Scholar
  29. 29.
    Abraham, R. J., Goff, D. A. and Smith, K. M. (1988) ‘N.M.R. Spectra of Porphyrins. Part 35. An Examination of the Proposed Models of the Chlorophyll Dimer’, J. Chem. Soc. Perkins Trans. I, 2443–2451.Google Scholar
  30. 30.
    Scherz, A. and Parson, W. W. (1984) ‘Oligomers of Bacteriochlorophyll and Bacteriopheophytin with Spectroscopic Properties Resembling those found in Photosynthetic Bacteria’, Biochimica et Biophysica Acta, 766, 653–665.CrossRefGoogle Scholar
  31. 31.
    Scherz, A., Rosenbach, V. and Malkin, S. (1985) ‘Small Oligomers of Bacteriochlorophyll as in vitro Models for the Primary Electron Donors and Light-Harvesting Pigments in Purple Photosynthetic Bacteria’, in M. E. Michel-Beyerle (ed.), Antennas and Reaction Centers of Photosynthetic Bacteria, Springer Series in Chemical Physics, Springer-Verlag, Berlin, Vol. 42, pp. 314–323.Google Scholar
  32. 32.
    Scherz, A. and Rosenbach-Belkin, V. (1988) ‘The Spectral Properties of Chlorophyll and Bacteriochlorophyll Dimers; A Comparative Study’, in J. Breton and A. Vermeglio (eds.), The Photosynthetic Bacterial Reaction Centers, Structure and Dynamics, NATO ASI Series A: Life Sciences, Plenum Press, New York, Vol. 149, pp. 295–308.Google Scholar
  33. 33.
    Hinton, J. F. and Harpool, R. D. (1977) ‘An ab Initio Investigation of (Formamide)n, and Formamide-(H2O)n Systems. Tentative Models for the Liquid State and Dilute Aqueous Solution’, J. Am. Chem. Soc. 99, 349–353.CrossRefGoogle Scholar
  34. 34.
    Renge, I. and Avarmaa, R. (1985) ‘Specific Solvation of Chlorophyll a: Solvent Nucleophility, Hydrogen Bonding and Steric Effects on Absorption Spectra’, Photochem. and Photobiol., 42, 253–260.CrossRefGoogle Scholar
  35. 35.
    Rosenbach-Belkin, V. (1988) ‘The Primary Reactants in Bacterial Photosynthesis Modeling by in vitro Preparation’, Ph. D. Thesis.Google Scholar
  36. 36.
    Oosawa, F. and Kasai, M. (1962) ‘A Theory of Linear and Helical Aggregations of Macro-molecules’, J. Mol. Biol. 4, 10–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Goldstein, R. F. and Stryer, L. (1986) ‘Cooperative Polymerization Reactions — Analytical Approximations, Numerical Examples, and Experimental Strategy’, Biophys. J. 50, 583–599.PubMedCrossRefGoogle Scholar
  38. 38.
    Fisher, J. R. E., Rosenbach-Belkin, V. and Scherz, A. (1989) ‘Cooperative Polymerization of Photosynthetic Pigments in Aqueous Solutions: Theory, Application and Relevance to the Photosynthetic Reaction Centers and Light-Harvesting Complexes’, submitted.Google Scholar
  39. 39.
    Lalonde, D. E., Petke, J. D. and Maggiora, G. M. (1989) ‘Evaluation of Approximations in Molecular Exciton Theory. 2. Application to Oligomeric Systems of Interest in Photosynthesis’, J. Phys. Chem. 93, 608–614.CrossRefGoogle Scholar
  40. 40.
    Scherz, A., Rosenbach-Belkin, V. and Fisher, J. R. E. (1989) ‘Distribution and Self-Assembly of Photosynthetic Pigments in Micelles: Theory and Application to the Pigment-Protein Organization into Light-Harvesting Complexes and Reaction Centers’, submitted.Google Scholar
  41. 41.
    Kushner, L. M., Hubbard, W. D. (1954) ‘Viscometric and Turbidimetric Measurements on Dilute Aqueous Solutions of a Non-Ionic Detergent’, J. Phys. Chem. 58, 1163–1167.CrossRefGoogle Scholar
  42. 42.
    Paradies, H. H. (1980) ‘Shape and Size of a Non-Ionic Surfactant Micelle. Triton X-100 in Aqueous Solution’, J. Phys. Chem. 84, 599–607.CrossRefGoogle Scholar
  43. 43.
    Kiley, P. J. and Kaplan, S. (1988) ‘Molecular Genetics of Photosynthetic Membrane Biosynthesis in Rhodobacter sphaeroides’, Microbiological Rev. 52, 50–69.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. Scherz
    • 1
  • V. Rosenbach-Belkin
    • 1
  • J. R. E. Fisher
    • 1
  1. 1.Department of BiochemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations