Photosynthetic Model Systems That Address the Role of Superexchange in Electron Transfer Reactions

  • Michael R. Wasielewski
  • Mark P. Niemczyk
  • Douglas G. Johnson
  • Walter A. Svec
  • David W. Minsek
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 22)


Four fixed-distance porphyrin-quinone molecules, 1–syn, 1–anti, 2–syn, and 2–anti, were synthesized. These molecules possess a zinc 5–phenyl-10,15,20–tripentylporphyrin electron donor attached to a naphthoquinone via a rigid pentiptycene spacer. The central benzene ring of the spacer is unsubstituted in 1 and possesses p-dimethoxy substituents in 2. The naphthoquinone is oriented either syn or anti to the porphyrin across the spacer. These molecules provide information concerning the orientation dependence of electron transfer between the porphyrin and the quinone, and the dependence of this transfer on low-lying ionic states of the spacer. The rate constants for the oxidation of the porphyrin lowest excited singlet state by the naphthoquinone are 1–syn: 8.2 × 109 s-1; 1–anti: 1.7 × 1010 s-1; 2–syn: 8.5 × 109 s-1; 2–anti: 1.9 × 1010 s-1. The corresponding rate constants for the porphyrin cation — naphthoquinone anion recombination reaction are 1–syn: 1.4 × 1010 s-1; 1–anti: 2.5 × 1010 s-1; 2–syn: 5.0 × 1010 s-1; 2–anti: 8.2 × 1010 s-1. The rate constants for the syn isomers are uniformly a factor of about 2 slower than those of the anti isomers. The charge separation reaction rates for 1 and 2 are similar, while the ion pair recombination reactions are about 3–4 × faster in 2 than in 1. The conformational effect is attributed to better overlap of the spacer wave functions in the anti vs the syn conformation, while the increase in recombination rate for 2 over 1 is attributed to a superexchange interaction involving an electronic configuration of the spacer in which the dimethoxybenzene cation contributes.


Charge Separation Fluorescence Lifetime Electron Transfer Reaction Transient Absorption Transient Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deisenhofen J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984) ‘X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis’, J. Mol. Biol., 180, 385–398.CrossRefGoogle Scholar
  2. 2.
    Larsson, S. (1981) ‘Electron transfer in chemical and biological systems. Orbital rules for nonadiabatic transfer’, J. Am. Chem. Soc., 103, 4034–4040.CrossRefGoogle Scholar
  3. 3.
    Larsson, S. (1983) ‘Electron transfer in proteins’, J. Chem. Soc., Faraday Trans. 2, 79, 1375–1388.Google Scholar
  4. 4.
    Miller, J. R., Beitz, J. V., and Huddleston, R. K. (1984) ‘Effect of free energy on rates of electron transfer between molecules’, J. Am. Chem. Soc, 106. 5057–5068.CrossRefGoogle Scholar
  5. 5.
    Wasielewski, M. R. (1988) ‘Distance dependencies of electron transfer reactions’, in M. A. Fox and M. Chanon (eds.), Photoinduced Electron Transfer, Part A, Elsevier, Amsterdam, pp. 161–206.Google Scholar
  6. 6.
    Wasielewski, M. R., Niemczyk, M. P., Svec, W. A., and Pewitt, E. B. (1985) ‘Dependence of rate constants for photoinduced charge separation and dark charge recombination on the free energy of reaction in restricted distance porphyrin-quinone molecules’, J. Am. Chem. Soc, 107, 1080–1082.CrossRefGoogle Scholar
  7. 7.
    Wasielewski, M. R. and Niemczyk, M. P. (1986) ‘Distance-dependent rates of photoinduced charge separation and dark charge recombination in fixed-distance porphyrin-quinone molecules’ in M. Gouterman, P. M. Rentzepis and K. D. Straub (eds.), Porphyrins — Excited States and Dynamics, ACS Symposium Series No. 321, American Chemical Society, Washington, D.C., pp. 154–165.CrossRefGoogle Scholar
  8. 8.
    Joran, A. R., Leland, B. A., Geller, G. G., Hopfield, J. J., and Dervan, P. B. (1984) ‘Models for photochemical electron transfer at fixed distances. Porphyrinbicyclo(2.2.2.)octane-quinone and porphyrin-bibicyclo(2.2.2.)octane-quinone’, J. Am. Chem. Soc, 106, 6090–6092.CrossRefGoogle Scholar
  9. 9.
    Schmidt, J. A., Siemiarczuk, A., Weedon, A. C., and Bolton, J. R. (1985) ‘Intramolecular photochemical electron transfer 3. Solvent dependence of fluorescence quenching and electron transfer rates in a porphyrin-amide-quinone molecule’, J. Am. Chem. Soc, 107. 6112–6114.CrossRefGoogle Scholar
  10. 10.
    Marcus, R. A. (1988) ‘Superexchange versus an intermediate BChl- mechanism in reaction centers of photosynthetic bacteria’, Chem. Phys. Lett., 133. 471–477.CrossRefGoogle Scholar
  11. 11.
    Won, Y. and Friesner, R. A. (1988) ‘On the viability of the superexchange mechanism in the primary charge separation of bacterial photosynthesis’, Biochim. Biophys. Acta, 935. 9–18.CrossRefGoogle Scholar
  12. 12.
    Bixon, M., Jortner, J., Plato, M., and Michel-Beyerle, M. E. (1988) ‘Mechanism of the primary charge separation in bacterial photosynthetic reaction centers’, in The Bacterial Reaction Center, Structure and Dynamics, J. Breton and A. Vermeglio, (eds.) Plenum, New York, pp. 399–419.Google Scholar
  13. 13.
    McConnell, H. M. (1961) ‘Intramolecular charge transfer in aromatic free radicals’, J. Chem. Phys., 35, 508–515.CrossRefGoogle Scholar
  14. 14.
    Paddon-Row, M. N. (1982) ‘Some aspects of orbital interactions through bonds: Physical and chemical consequences’, Acc. Chem. Res., 15, 245–251.CrossRefGoogle Scholar
  15. 15.
    Ohta, K., Closs, G. L., Morokuma, K., and Green, N. J. (1986) ‘Stereoelectronic effects in intramolecular long-distance electron transfer in radical anions as predicted by ab initio MO calculations’, J. Am. Chem. Soc., 108, 1319–1320.CrossRefGoogle Scholar
  16. 16.
    Beratan, D. N. and Hopfield, J. J. (1984) ‘Calculation of electron tunneling matrix elements in rigid systems. Mixed-valence dithiaspirocyclobutane molecules’, J. Am. Chem. Soc, 106, 1584–1594.CrossRefGoogle Scholar
  17. 17.
    Larsson, S. and Volosov, A. J. (1986) ‘Distance dependence in photo-induced intramolecular electron transfer’, J. Chem. Phys., 85, 2548–2554.CrossRefGoogle Scholar
  18. 18.
    Redi, M and Hopfield, J. J. (1988) ‘Theory of thermal and photoassisted electron tunneling’, J. Chem. Phys., 72, 6651–6660.CrossRefGoogle Scholar
  19. 19.
    Marcus, R. A. (1988) ‘An internal consistency test and its implications for the initial steps in bacterial photosynthesis’, Chem. Phys. Lett., 146. 13–22.CrossRefGoogle Scholar
  20. 20.
    Joachim, C. (1987) ‘Ligand-length dependence of the intramolecular electron transfer through-bond coupling parameter’, Chem. Phys., 116, 339–349.CrossRefGoogle Scholar
  21. 21.
    Heitele, H. and Michel-Beyerle, M. E. (1985) ‘Electron transfer through aromatic spacers in bridged electron donor-acceptor molecules’, J. Am. Chem. Soc, 107. 8286–8288.CrossRefGoogle Scholar
  22. 22.
    Heitele, H. and Michel-Beyerle, M. E. (1985) ‘Electron transfer through aromatic spacers in bridged electron donor-acceptor molecules’, in M. E. Michel-Beyerle, (ed.), ‘Antennas and Reaction Centers of Photosynthetic Bacteria’, Springer, Berlin, pp. 250–255.Google Scholar
  23. 23.
    Hart, H., Bashir-Hashemi, A., Luo, J., and Meador, M. A. (1986) ‘Iptycenes. Extended triptycenes’, Tetrahedron, 42, 1641–1654.CrossRefGoogle Scholar
  24. 24.
    Wasielewski, M. R., Johnson, D. G., Svec, W. A., Kersey, K. M., and Minsek, D. W. (1988) ‘Achieving high quantum yield charge separation in porphyrin-containing donor-acceptor molecules at 10 K’, J. Am. Chem. Soc, 110, 7219–7221.CrossRefGoogle Scholar
  25. 25.
    Howell, J. O., Goncalves, J. M., Amatore, C, Klasinc, L., Wightman, R. M., and Kochi, J. A. (1984) ‘Electron transfer from aromatic hydrocarbons and their π complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials’, J. Am. Chem. Soc, 106, 3968–3976.CrossRefGoogle Scholar
  26. 26.
    Mortensen, J. and Heinze, J. (1984) ‘The electrochemical reduction of benzene. First direct determination of the reduction potential’, Angew. Chem. Int. Ed. Engl., 23, 84–85.CrossRefGoogle Scholar
  27. 27.
    Henton, D. R., McCreery, R. L., and Swenton, J. S. (1980) ‘Anodic oxidation of 1,4-dimethoxy aromatic compounds. A facile route to functionalized quinone bisketals’, J. Org. Chem., 45, 369–378.CrossRefGoogle Scholar
  28. 28.
    Fajer, J., Borg, D. C., Forman, A., Dolphin, D., and Felton, R. H. (1970) ‘π-Cation radicals and dications of metalloporphyrins’, J. Am. Chem. Soc., 92, 3451–3460.PubMedCrossRefGoogle Scholar
  29. 29.
    Distances were determined from Corey-Pauling-Koltun molecular models.Google Scholar
  30. 30.
    Oliver, A. M., Craig, D. C, Paddon-Row, M. N., Kroon, J., and Verhoeven, J. W. (1988) ‘Strong effects of the bridge configuration on photoinduced charge separation in rigidly-linked donor-acceptor systems’, Chem. Phys. Lett., 150. 366–373.CrossRefGoogle Scholar
  31. 31.
    Closs, G. L., Calcaterra, L. T., Green, N. J., Penfield, K. W., and Miller, J. R. (1986) ‘Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions’, J. Phys. Chem., 90, 3673–3683.CrossRefGoogle Scholar
  32. 32.
    Plato, M., Mobius, K., Michel-Beyerle, M. E., Bixon, M., and Jortner, J. (1988) ‘Intermodular electronic interactions in the primary charge separation in bacterial photosynthesis’, J. Am. Chem. Soc., 110, 7279–7285.CrossRefGoogle Scholar
  33. 33.
    Seybold, P. G. and Gouterman, M. (1969) ‘Porphyrins XIII: Fluorescence spectra and quantum yields’, J. Mol. Spectrosc, 31, 1–13.CrossRefGoogle Scholar
  34. 34.
    Wasielewski, M. R., Smith, R. L., and Kostka, A. G. (1980) ‘Electrochemical production of chlorophyll a and pheophytin a excited states’, J. Am. Chem. Soc., 102, 6923–6928.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Michael R. Wasielewski
    • 1
  • Mark P. Niemczyk
    • 1
  • Douglas G. Johnson
    • 1
  • Walter A. Svec
    • 1
  • David W. Minsek
    • 1
  1. 1.Chemistry DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations