Advertisement

Static and Dynamic Electrolyte Effects on Excited State Intramolecular Electron Transfer and Excited State Solvation

  • Dan Huppert
  • Varda Ittah
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 22)

Abstract

In a solution of an electrolyte in a liquid of low permittivity after excitation of molecules which exhibit either a large Stokes shift (coumarins) or undergo an intramolecular electron transfer (DMABN) process, the fast solvent longitudinal dielectric relaxation, τ1= (ɛs) τD (few picosecond in non associative liquids) is succeeded by nanosecond time scale translational relaxation of the “ionic atmosphere”.

In such solutions one may assume that single ions, ion pairs, triple ions and larger aggregates are present. At an electrolyte concentration range of 0.005M–0.5M dissolved in neat liquid with permittivities of 4.5–7 most of the salt is present as ion-pairs. The dissolved electrolyte ionic relaxation time measured by time resolved fluorescence was found to be inversely dependent on the electrolyte concentration and linearly dependent on the ion size. Thus new ways of probing medium effects on excited state behavior are opened.

Keywords

Electrolyte Concentration Steady State Fluorescence Reorganization Energy Static Dielectric Constant Ionic Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1a]
    D. Huppert, H. Kanety & E.M. Kosower, Chem. Phys. Lett. 84 (1981) 48-53.CrossRefGoogle Scholar
  2. [1b]
    D. Huppert, H. Kanety & E.M. Kosower, Disc. Faraday Soc. 74 (1982) 161–175 (disc. 194–203).CrossRefGoogle Scholar
  3. [1c]
    E.M. Kosower & D. Huppert, Chem. Phys. Lett. 96 (1983) 433–435.CrossRefGoogle Scholar
  4. [1d]
    E.M. Kosower, H. Kanety, H. Dodiuk, G. Striker, T. Jovin, H. Boni & D. Huppert, J. Phys. Chem. 87 (1983) 2479–2484.CrossRefGoogle Scholar
  5. [1e]
    R. Giniger, D. Huppert & E.M. Kosower, Chem. Phys. Lett. 118 (1985) 240–245.CrossRefGoogle Scholar
  6. [1f]
    E.M. Kosower, J. Am. Chem. Soc. 107 (1985) 1114–1118.CrossRefGoogle Scholar
  7. [1g]
    E.M. Kosower & D. Huppert, Ann. Rev. Phys. Chem. 37 (1986) 127–156.CrossRefGoogle Scholar
  8. [1h]
    D. Huppert, V. Ittah & E.M. Kosower, Chem.Phys. Lett. 144 (1988) 15–23.CrossRefGoogle Scholar
  9. [1i]
    D. Huppert, V. Ittah, A. Masad & E.M. Kosower, Chem. Phys. Lett. 150 (1988) 349–356.CrossRefGoogle Scholar
  10. [1j]
    D. Huppert, V. Ittah, & E.M. Kosower, Chem. Phys. Lett., in press.Google Scholar
  11. [1k]
    D. Huppert, S.D. Rand, P.M. Rentzepis, P.F. Barbara, W.S. Struve & Z.R. Grabowski, J. Chem. Phys. 75 (1981) 5714–5719.CrossRefGoogle Scholar
  12. [2a]
    G. van der Zwan and J.T. Hynes, J. Phys. Chem. 89 (1985) 4181–4188.CrossRefGoogle Scholar
  13. [2b]
    J.T. Hynes, J. Phys. Chem. 90 (1986) 3701–3706.CrossRefGoogle Scholar
  14. [2c]
    E.A. Carter and J.T. Hynes 93 (1989) 2184–2187.Google Scholar
  15. [3a]
    F. Heisel and J.A. Miehe, Chem. Phys. 98 (1985) 233–241.CrossRefGoogle Scholar
  16. [3b]
    F. Heisel, J.A. Miehe & J.M.G. Martinho, Chem. Phys. 98 (1985) 243–249.CrossRefGoogle Scholar
  17. [3c]
    F. Heisel & J.A. Miehe, Chem. Phys. Lett. 128 (1986) 323–329.CrossRefGoogle Scholar
  18. [4]
    M. Morillo and R.I. Cukier, J. Chem. Phys. 89 (1988) 6736–6743.CrossRefGoogle Scholar
  19. [5]
    P.G. Wolynes, J. Chem. Phys. 86 (1987) 5133–5136.CrossRefGoogle Scholar
  20. [6a]
    I. Rips & J. Jortner, J. Chem. Phys. 88 (1988) 818–822.CrossRefGoogle Scholar
  21. [6b]
    I. Rips, J. Klafter & J. Jortner, J. Chem. Phys. 88 (1988) 3246–3252.CrossRefGoogle Scholar
  22. [7a]
    M. Maroncelli and G.R. Fleming, J. Chem. Phys. 86 (1987) 6221–6239.CrossRefGoogle Scholar
  23. [7b]
    M. Maroncelli & G.R. Fleming, J. Chem. Phys. 89 (1988) 875.CrossRefGoogle Scholar
  24. [8]
    M. Maroncelli, E.W. Castner Jr., B. Bagchi & G.R. Fleming, Faraday Disc. 85 (1988) 199–210.CrossRefGoogle Scholar
  25. [9a]
    V. Nagarajan, A.M. Brearley, T.J. Kang & P.F. Barbara, J. Chem. Phys. 86 (1987) 3183–3196.CrossRefGoogle Scholar
  26. [9b]
    M.A. Kablow, T.J. Kang & P.F. Barbara, J. Phys. Chem. 91 (1987) 6452–6455.CrossRefGoogle Scholar
  27. [9c]
    P.F. Barbara & W. Jazerba, Acc. Chem. Res. 21 (1988) 195–199.CrossRefGoogle Scholar
  28. [10a]
    J.D. Simon & S.-G. Su, J. Chem. Phys. 87 (1987) 7016–7023.CrossRefGoogle Scholar
  29. [10b]
    J.D. Simon, Acc. Chem. Res. 21 (1988) 128–134.CrossRefGoogle Scholar
  30. [10c]
    J.D. Simon & S.-G. Su, J. Phys. Chem. 92 (1988) 2395–2397.CrossRefGoogle Scholar
  31. [11]
    H. Sumi & R.A. Marcus, J. Chem. Phys. 84 (1986) 4894–4914.CrossRefGoogle Scholar
  32. [12]
    M. Sparpaglione & S. Mukamel, J. Phys. Chem. 91 (1987) 3938–3943.CrossRefGoogle Scholar
  33. [13]
    M.D. Newton & H.L. Friedman, J. Chem. Phys. 88 (1988) 4460–4468.CrossRefGoogle Scholar
  34. [14a]
    P. Debye & E. Hückel, Phys. Zeit. 24 (1923) 185.Google Scholar
  35. [14b]
    P. Debye & H. Falkenhagen, Phys. Zeit. 29 (1928) 121.Google Scholar
  36. [14c]
    P. Debye & H. Falkenhagen, Phys. Zeit. 29 (1928) 401.Google Scholar
  37. [15]
    L. Onsager, Phys. Zeit. 28 (1927) 277.Google Scholar
  38. [16a]
    R.M. Fuoss & C.A. Kraus, J. Am. Chem. Soc. 55 (1933) 1019.CrossRefGoogle Scholar
  39. [16b]
    R.M. Fuoss & C.A. Kraus, J. Am. Chem. Soc. 55 (1933) 2387.CrossRefGoogle Scholar
  40. [17]
    N. Bjerrum, Kgl. Danske-Vidensk-Selskab. Skr. 7 (1926) 9.Google Scholar
  41. [18]
    D. Huppert & E. Kolodney, Chem. Phys. 63 (1981) 401–410.CrossRefGoogle Scholar
  42. [19a]
    J.P. Badiali, H. Chacet & J.C. Lestrade, Ber. Bunsen Ges. 75 (1971) 297.Google Scholar
  43. [19b]
    J.P. Badiali, H. Chacet & J.C. Lestrade, Electrochim. Acta 16 (1971) 731.CrossRefGoogle Scholar
  44. [19c]
    J.C. Lestrade, J.P. Badiali & H. Chachet, ‘Dielectric and Related Molecular Processes, 2 (1975) Chap. 3, Chem. Soc, London.Google Scholar
  45. [20]
    T. Sigvartsen, B. Gestblom, E. Noreland & J. Songstad, Acta Chimica Scandinavica 43 (1989) 103–115.CrossRefGoogle Scholar
  46. [21]
    J. Padova in ‘Water and Aqueous solutions’ R.A. Home, editor p.109–174, Wiley-Interscience New York 1972.Google Scholar
  47. [22a]
    M. Mohammad & E.M. Kosower, J. Phys. Chem. 74 (1970) 1153.CrossRefGoogle Scholar
  48. [22b]
    E.M. Kosower, J. Am. Chem. Soc. 80 (1958) 3253–3261.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Dan Huppert
    • 1
  • Varda Ittah
    • 1
  1. 1.School of Chemistry, Sackler Faculty of Exact SciencesTel-Aviv UniversityTel- AvivIsrael

Personalised recommendations