Advertisement

Structure and Marker Mode of The Primary Electron Donor State Absorption of Photosynthetic Bacteria: Hole Burned Spectra

  • D. Tang
  • S. G. Johnson
  • R. Jankowiak
  • J. M. Hayes
  • G. J. Small
  • D. M. Tiede
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 22)

Abstract

Structured photochemical hole burned spectra are presented for P870 and P960 of the reaction centers (RC) of Rhodobacter sphaeroides and Rhodopseudomonas viridis. A special pair marker mode (ωsp) Franck-Condon progression is identified for both P870 and P960. Zero-phonon holes are reported which yield P870* and P960* decay times in good agreement with the time domain values. This agreement suggests that vibrational thermalization occurs prior to the primary charge separation process. The theory of Hayes and Small [1], embellished for the marker mode progression, is shown to account for the primary donor state absorption and burn-wavelength dependent hole spectra. Site excitation energy selection is used to establish correlation between a higher energy RC state and P* for both bacteria.

Keywords

Reaction Center Photosynthetic Bacterium Special Pair Rhodobacter Sphaeroides Charge Transfer State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.)
    Hayes, J.M. and Small, G.J. (1986) ‘Photochemical hole burning and strong electronphonon coupling: primary donor states of reaction centers of photosynthetic bacteria’, J. Phys. Chem., 90, 4928–4931.CrossRefGoogle Scholar
  2. 2.)
    Deisenhofen J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) ‘X-ray structure analysis of a membrane protein complex: electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis’, J. Mol. Biol., 180, 385–398.CrossRefGoogle Scholar
  3. 3.)
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) ‘Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis’, Nature (London), 318, 618–624.CrossRefGoogle Scholar
  4. 4.)
    Michel, H., Epp, O. and Deisenhofer, J. (1986) ‘Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis’, EMBO J., 5, 2445–2451.PubMedGoogle Scholar
  5. 5.)
    Chang, C.H., Tiede, D., Tang, J., Smith, U. and Norris, J. (1986) ‘Structure of Rhodopseudomonas sphaeroides R-26 reaction center’, FEBS Lett., 205, 82–86.PubMedCrossRefGoogle Scholar
  6. 6.)
    Allen, J.P., Feher, G., Yeates, T.O., Rees, D.C., Deisenhofer, J., Michel, H. and Huber, R. (1986) ‘Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction’, Proc. Natl. Acad. Sci. USA, 83, 8589–8593.PubMedCrossRefGoogle Scholar
  7. 7.)
    Yeates, T.O., Komiya, H., Chirino, A., Rees, D.C., Allen, J.P. and Feher, G. (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1:protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions’, Proc. Natl. Acad. Sci. USA, 85, 7993–7997.PubMedCrossRefGoogle Scholar
  8. 8.)
    Kirmaier, C. and Holten, D. (1987) ‘Primary photochemistry of reaction centers from the photosynthetic purple bacteria’, Photosyn. Res., 13, 225–260.CrossRefGoogle Scholar
  9. 9.)
    Budil, D.E., Gast, P., Chang, C.H., Schiffer, M. and Nords, J. (1987) ‘Three-dimensional x-ray crystallography of membrane proteins: insight into electron transfer’, Ann. Rev. Phys. Chem., 38, 561–583.CrossRefGoogle Scholar
  10. 10.)
    Warshel, A. and Parson, W.W. (1987) ‘Spectroscopic properties of photosynthetic reaction centers. 1. Theory’, J. Am. Chem. Soc., 109, 6143–6152.CrossRefGoogle Scholar
  11. 11.)
    Scherer, P.O.J. and Fischer, S. (1989) ‘Long-range electron transfer within the hexamer of the photosynthetic reaction center Rhodopseudomonas viridis’, J. Phys. Chem., 93, 1633–1637.CrossRefGoogle Scholar
  12. 12.)
    Boxer, S.G., Lockhart, D.J. and Middendorf, T.R. (1986) ‘Photochemical hole burning in photosynthetic reaction centers’, Chem. Phys. Lett., 123, 476–482.CrossRefGoogle Scholar
  13. 13.)
    Boxer, S.G., Middendorf, T.R. and Lockhart, D.J. (1986) ‘Reversible photochemical hole burning in Rhodopseudomonas viridis reaction centers’, FEBS Lett., 200, 237–241.CrossRefGoogle Scholar
  14. 14.)
    Meech, S.R., Hoff, A.J. and Wiersma, D.A. (1986) ‘Role of charge-transfer states in bacterial photosynthesis’, Proc. Natl. Acad. Sci. USA, 83, 9464–9468.PubMedCrossRefGoogle Scholar
  15. 15).
    Won, Y. and Friesner, R.A. (1988) ‘Theoretical studies of photochemical hole burning in photosynthetic bacterial reaction centers’, J. Phys. Chem., 92, 2214–2219.CrossRefGoogle Scholar
  16. 16.)
    Won, Y. and Friesner, R.A. (1989) ‘Comment: Theoretical studies of photochemical hole burning in photosynthetic bacterial reaction centers’, J. Phys. Chem., 93,1007.CrossRefGoogle Scholar
  17. 17.)
    Hayes, J.M., Gillie, J.K., Tang, D. and Small, G.J. (1988) ‘Theory for spectral hole burning of the primary electron donor state of photosynthetic reaction centers’, Biochim. Biophys. Acta, 932, 287–305.CrossRefGoogle Scholar
  18. 18.)
    Tang, D., Jankowiak, R., Gillie, J.K., Small, G.J. and Tiede, D. (1988) ‘Structured holeburned spectra of reaction centers of Rhodopseudomonas viridis’ J. Phys. Chem., 92, 4012–4015.CrossRefGoogle Scholar
  19. 19.)
    Tang, D., Jankowiak, R., Small, G.J. and Tiede, D. (1989) ‘Structured hole burned spectra of the primary donor state absorption region of Rhodopseudomonas viridis’, Chem. Phys., 131, 99–113.CrossRefGoogle Scholar
  20. 20.)
    Vermeglio, A. and Paillotin, G. (1982) ‘Structure of Rhodopseudomonas viridis reaction centers absorption and photoselection at low temperature’, Biochim. Biophys. Acta, 681, 32–40.CrossRefGoogle Scholar
  21. 21.)
    Fleming, G.R., Martin, J.L. and Breton, J. (1988) ‘Rules of primary electron transfer in photosynthetic reaction centers and their mechanistic implications’, Nature (London), 333, 190–193.CrossRefGoogle Scholar
  22. 22.)
    Breton, J., Martin, J.L., Fleming, G.R. and Lambry, J.-C. (1988) ‘Low-temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria’, Biochem., 27, 8276–8284.CrossRefGoogle Scholar
  23. 23.)
    Gillie, J.K., Small, G.J. and Golbeck, J.H. (1989) ‘Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200)’, J. Phys. Chem., 93, 1620–1627.CrossRefGoogle Scholar
  24. 24.)
    Renge, I., Mauring, K. and Avarmaa, R. (1987) ‘Site-selection optical spectra of bacteriochlorophyll and bacteriopheophytin in frozen solutions’, J. Lumin., 37, 207–214.CrossRefGoogle Scholar
  25. 25.)
    Lee, I.-J., Hayes, J.M. and Small, G.J. (1989) ‘Hole and anti-hole profiles in non-photochemical hole burned spectra’, J. Chem. Phys., to be published.Google Scholar
  26. 26.)
    Angerhofer, A. (1987) ‘Optische und ODMR-untersuchungen an antennen und reaktionszentren photosynthetisierender bakterien’, thesis (Ph.D.), Universitat Stuttgart, Stuttgart, West Germany.Google Scholar
  27. 27.)
    Maslov, V.G., Klevanik, A.V., Ismailov, M.A. and Shuvalov, V.A. (1983) ‘Nature of long-wave absorption band of Rhodopseudomonas viridis reaction centers in relation to primary charge separation’, Dokl. Akad. SSSR, 269, 1217–1221.Google Scholar
  28. 28.)
    Hayes, J.M., Fearey, B.L., Carter, T.P. and Small, G.J. (1986) ‘Nonphotochemical hole burning — versatility and theoretical status’, Int. Rev. Phys. Chem., 5, 175–184.CrossRefGoogle Scholar
  29. 29.)
    Jortner, J. (1980) ‘Dynamics of electron transfer in bacterial photosynthesis’, Biochim. Biophys. Acta, 594, 193–230.PubMedGoogle Scholar
  30. 30.)
    Bixon, M. and Jortner, J. (1982) ‘Quantum effects on electron-transfer processes’, Faraday Discuss. Chem. Soc., 74, 17–29.Google Scholar
  31. 31.)
    Meech, S.R., Hoff, A.J. and Wiersma, D.A. (1985) ‘Evidence for a very early intermediate in bacterial photosynthesis. A photon-echo and hole-burning study of the primary donor band in Rhodopseudomonas sphaeroides’, Chem. Phys. Lett., 121, 287–292.CrossRefGoogle Scholar
  32. 32.)
    Johnson, S.G. and Small, G.J. (1989) ‘Spectral hole burning of a strongly exciton-coupled bacteriochlorophyll a antenna complex’, Chem. Phys. Lett., 155, 371–375.CrossRefGoogle Scholar
  33. 33.)
    Johnson, S.G., Tang, D., Jankowiak, R., Hayes, J.M., Small, G.J. and Tiede, D. (1989) ‘Polarized photochemical hole burning of reaction centers of Rhodopseudomonas viridis and Rhodobacter sphaeroides’, to be published.Google Scholar
  34. 34.)
    Breton, J., Martin, J.-L., Migus, A., Antonetti, A. and Orszag, A. (1986) ‘Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis’, Proc. Natl. Acad. Sci. USA, 83, 5121–5125.PubMedCrossRefGoogle Scholar
  35. 35.)
    Martin, J.-L., Breton, J., Hoff, A.J., Migus, A. and Antonetti, A. (1986) ‘Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ±.2 psec.’ Proc. Natl. Acad. Sci. USA, 83, 957–961.PubMedCrossRefGoogle Scholar
  36. 36.)
    Jankowiak, R., Tang, D., Small, G.J. and Seibert, M. (1989) ‘Transient and persistent hole burning of the reaction center of photosystem II’, J. Phys. Chem., 93, 1649–1654.CrossRefGoogle Scholar
  37. 37.)
    Michel, H. and Deisenhofer, D. (1986) ‘X-ray diffraction studies on a crystalline bacterial photosynthetic reaction center: a progress report and conclusions on the structure of photosystem II reaction centers’, in A.C. Staehelin and C.J. Arntzen (eds.), Encyclopedia of Plant Physiology: Photosynthesis III, Springer-Verlag, Berlin, pp. 371–381.Google Scholar
  38. 38.)
    Michel, H. and Deisenhofer, J. (1987) ‘The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis’, Chemica Scripta, 27B, 173–180.Google Scholar
  39. 39.)
    Trebst, A. (1986) ‘The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane’, Z. Naturforsch, 41C, 240–245.Google Scholar
  40. 40.)
    Nanba, O. and Satoh, K. (1987) ‘Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559’, Proc. Natl. Acad. Sci. USA, 84, 109–112.PubMedCrossRefGoogle Scholar
  41. 41.)
    Also, experiments performed on the undiluted sample yielded PHB spectra that agree with the ΔT spectra obtained earlier [18,19], yet result in ΔA spectra that are consistent with those presented here. The feature in Fig. 3 (which should be labeled as a ΔT spectrum) of Tang, D., Jankowiak, R., Small, G.J. and Tiede, D. (1989) ‘Structured hole burned spectra of the primary donor state absorption region of Rhodopseudomonas viridis’, Chem. Phys., 131, 99–113 assigned to a CT state is actually the <Inline></Inline>satellite hole.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • D. Tang
    • 1
  • S. G. Johnson
    • 1
  • R. Jankowiak
    • 1
  • J. M. Hayes
    • 1
  • G. J. Small
    • 1
  • D. M. Tiede
    • 2
  1. 1.Ames Laboratory-USDOE and Dept. of ChemistryIowa State UniversityAmesUSA
  2. 2.Chemistry DivisionArgonne, National LaboratoryArgonneUSA

Personalised recommendations