Skip to main content

Regional differences in the transduction mechanisms of 5-hydroxytryptamine receptors in the mammalian brain

  • Chapter
Cardiovascular Pharmacology of 5-Hydroxytryptamine

Abstract

During the last ten years, binding studies with selective radioligands have contributed to the present knowledge of central 5-hydroxytryptamine (5-HT) receptors, leading to the identification of membrane-bound specific sites with pharmacological properties expected for such receptors. Three main classes of 5-HT binding sites designated 5-HT1,5-HT2 and 5-HT3 have been identified so far [1], Apparently a single homogeneous population of sites corresponds to each of the two latter classes (at least in the CNS), but clearcut evidence of heterogeneity of 5-HT1 sites has been reported [2]. Thus it could be established that 5-HT1 sites are a mixture of 4 distinct classes of high affinity sites for [3H]5-HT called 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D, whose proportions are extremely variable from one brain area to another, and also from one species to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology25: 563–575.

    Article  CAS  PubMed  Google Scholar 

  2. Pedigo NW, Yamamura HI, Nelson DL (1981): Discrimination of multiple [3H]5- hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem36: 220–226.

    Article  CAS  PubMed  Google Scholar 

  3. Von Hungen K, Roberts S, Hill DF (1975): Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Research84: 257–267.

    Article  Google Scholar 

  4. Roth BL, Chuang DM (1987): Multiple mechanisms of serotonergic signal transduction. LifeSci41: 1051–1064.

    Article  CAS  PubMed  Google Scholar 

  5. Hamon M, Gozlan H, EI Mestikawy S, Emerit MB, Cossery JM, Lutz O. (1988): Biochemical properties of central serotonin receptors, pp. 393–422 in: Osborne NN, Hamon M (eds), Neuronal Serotonin. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  6. Neer EJ, Clapham DE (1988): Roles of G protein subunits in transmembrane signalling. Nature (Lond)333: 129–134.

    Article  CAS  Google Scholar 

  7. Peroutka SJ, Lebovitz RM, Snyder SH (1979): Serotonin receptor binding sites affected differentially by guanine nucleotides. Mol Pharmacol16: 700–708.

    CAS  PubMed  Google Scholar 

  8. Hamon M, Nelson DL, Herbet A, Glowinski J (1980): Multiple receptors for serotonin in the rat brain, pp. 223–233 in: Pepeu G, Kuhar MJ, Enna SJ (eds), Receptors for Neurotransmitters and Peptide Hormones. N.Y.: Raven Press.

    Google Scholar 

  9. Hamon M, Goetz C, Gozlan H (1983): Reciprocal modulations of central 5-HT receptors by GTP and cations, pp. 349–359 in: Mandel P, de Feudis FV (eds), CNS receptors–from molecular pharmacology to behavior. N.Y.: Raven Press.

    Google Scholar 

  10. Kendall DA, Nahorski SR (1983): Temperature-dependent 5-hydroxytryptamine (5-HT)-sensitive [3H] spiperone binding to rat cortical membranes: regulation by guanine nucleotide and antidepressant treatment. J Pharmacol Exp Ther227: 429–434.

    CAS  PubMed  Google Scholar 

  11. Battaglia G, Shannon M, Titeler M (1984): Guanyl nucleotide and divalent cation regulation of cortical S2 serotonin receptors. J Neurochem43: 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  12. Shearman MS, Strange PG (1988): Guanine nucleotide effects on agonist binding to serotonin 5-HT2 receptors in rat frontal cortex. Biochem Pharmacol37: 3097–3102.

    Article  CAS  PubMed  Google Scholar 

  13. Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983): Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature (Lond)305: 140–142.

    Article  CAS  Google Scholar 

  14. Hall MD, Gozlan H, Emerit MB, El Mestikawy S, Pichat L, Hamon M (1986): Differentiation of pre- and post-synaptic high affinity serotonin receptor binding sites using physico-chemical parameters and modifying agents. Neurochem Res11: 891–912.

    Article  CAS  PubMed  Google Scholar 

  15. Heuring RE, Peroutka SJ (1987): Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci7: 894–903.

    CAS  PubMed  Google Scholar 

  16. Palacios JM, Markstein R, Pazos A (1986): Serotonin-lC sites in the choroid plexus are not linked in a stimulatory or inhibitory way to adenylate cyclase. Brain Research380: 151–154.

    Article  CAS  PubMed  Google Scholar 

  17. Julius D, Mac Dermott AB, Axel R, Jessell TM (1988): Molecular characterization of a functional cDNA encoding the serotonin 1C receptor. Science241: 558–564.

    Article  CAS  PubMed  Google Scholar 

  18. Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987): An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature (Lond)329: 75–79.

    Article  CAS  Google Scholar 

  19. Kilpatrick GJ, Jones BJ, Tyers MB (1987): Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature (Lond)330: 746–748.

    Article  CAS  Google Scholar 

  20. Tsang D, Lai S (1977): Effect of monoamine receptor agonists and antagonists on cyclic AMP accumulation in human cerebral cortex slices. Can. J. Physiol Pharmacol 55:1263–1269.

    Article  CAS  PubMed  Google Scholar 

  21. Ahn HS, Makman MH (1978): Stimulation of adenylate cyclase activity in monkey anterior limbic cortex by serotonin. Brain Research153: 636–640.

    Article  CAS  PubMed  Google Scholar 

  22. Enjalbert A, Bourgoin S, Hamon M, Adrien J, Bockaert J (1978): Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. I. Development and distribution of serotonin- and dopamine-sensitive adenylate cyclases in rat and guinea pig brain. Mol Pharmacol 14:2–10.

    CAS  PubMed  Google Scholar 

  23. Enjalbert A, Hamon M, Bourgoin S, Bockaert J (1978): Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. II. Comparison with dopamine- and isoproterenol-sensitive adenylate cyclases in rat brain. Mol Pharmacol14: 11–23.

    CAS  PubMed  Google Scholar 

  24. Euvrard C, Boissier JR (1980): Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperidinyl indole). Europ J Pharmacol63: 65–72.

    Article  CAS  Google Scholar 

  25. Middlemiss DN, Blakeborough L, Leather SR (1977): Direct evidence for an interaction of ß-adrenergic blockers with the 5-HT receptor. Nature (Lond) 267: 289–290.

    CAS  Google Scholar 

  26. Barbaccia ML, Brunello N, Chuang DM, Costa E (1983): Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. J Neurochem40: 1671–1679.

    Article  CAS  PubMed  Google Scholar 

  27. Markstein R, Hoyer D, Engel G (1986): 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 333: 335–341.

    Article  CAS  Google Scholar 

  28. Dumuis A, Bouhelal R, Sebben M, Bockaert J (1988): A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205 930. Europ J Pharmacol146: 187–188.

    Article  CAS  Google Scholar 

  29. Hamon M, Bourgoin S (1982): Characteristics of 5-HT metabolism and function in the developing brain, pp. 197–220 in: Osborne NN (ed), Biology of serotonergic transmission. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  30. Shenker A, Maayani S, Weinstein H, Green JP (1987): Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol31: 357–367.

    CAS  PubMed  Google Scholar 

  31. De Vivo M, Maayani S (1986): Characterization of the 5-hydroxytryptamine1A receptor- mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther238: 248–253.

    PubMed  Google Scholar 

  32. Vergé D, Daval G, Marcinkiewicz M, Patey A, El Mestikawy S, Gozlan H, Hamon M (1986): Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5, 7-dihydroxytryptamine treated rats. J Neurosci6: 3474–3482.

    PubMed  Google Scholar 

  33. Daval G, Vergé, D, Becerril A, Gozlan H, Spampinato U, Hamon M (1987): Transient expression of 5-HT1A receptor binding sites in some areas of the rat CNS during postnatal development. Int J Devi Neurosci5: 171–180.

    Article  CAS  Google Scholar 

  34. Bockaert J, Dumuis A, Bouhelal R, Sebben M, Cory RN (1987): Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeberg’s Arch Pharmacol335: 588–592.

    Article  CAS  Google Scholar 

  35. Hamon M (1987): Second messenger systems linked to different serotonin (5-HT) receptors, pp. 281–284 in: Rand MJ, Raper C (eds), Pharmacology. Elsevier Sci. Publ.

    Google Scholar 

  36. Hamon M, Fattaccini CM, Adrien J, Gallissot MC, Martin P, Gozlan H (1988): Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-HT1A agonists with potential anxiolytic properties. J Pharmacol Exp Ther246: 745–752.

    CAS  PubMed  Google Scholar 

  37. Bouhelal R, Smounya L, Bockaert J (1988): 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Europ J Pharmacol 151:189–196.

    Article  CAS  Google Scholar 

  38. Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand, K (1986): Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol332: 1–7.

    Article  CAS  Google Scholar 

  39. Schlicker E, Fink K, Classen K, Göthert M (1987): Facilitation of serotonin (5-HT) release in the rat brain cortex by cAMP and probable inhibition of adenylate cyclase in 5-HT nerve terminals by presynaptic α2-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol336: 251–256.

    Article  CAS  Google Scholar 

  40. Hoyer D, Schoeffter P (1988): 5-HT1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Europ J Pharmacol 147:145–147.

    Article  CAS  Google Scholar 

  41. Hamblin MW, Ariani K, Adriaenssens PI, Ciaranello RD (1987): [3H]-Dihydroergotamine as a high affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states. J Pharmacol Exp Ther 243:989–1001.

    CAS  PubMed  Google Scholar 

  42. Conn PJ, Sanders-Bush E, Hoffman BJ, Hartig PR (1986): A unique serotonin receptor in choroid plexus is linked to phosphatidyl-inositol turnover. Proc Natl Acad Sci USA83: 4086–4088.

    Article  CAS  PubMed  Google Scholar 

  43. Conn PJ, Sanders-Bush E (1986): Agonist-induced phosphoinositide hydrolysis in choroid plexus. J Neurochem47: 1754–1760.

    Article  CAS  PubMed  Google Scholar 

  44. Conn PJ, Sanders-Bush E (1987): Relative efficacies of piperazines at the phosphoinositide hydrolysis-linked serotonergic (5-HT2 and 5-HT1c) receptors. J Pharmacol Exp Ther242: 552–557.

    CAS  PubMed  Google Scholar 

  45. Conn PJ, Sanders-Bush E (1985): Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J Pharmacol Exp Ther234: 195–203.

    CAS  PubMed  Google Scholar 

  46. Kendall DA, Nahorski SR (1985): 5-hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther 233:473–479.

    CAS  PubMed  Google Scholar 

  47. Conn PJ, Sanders-Bush E (1986): Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the serotonin 5-HT2 binding site. J Neurosci6: 3669–3675.

    CAS  PubMed  Google Scholar 

  48. Hansson, E, Simonsson P, Ailing C (1987): 5-hydroxytryptamine stimulated the formation of inositol phosphate in astrocytes from different regions of the brain. Neuropharmacology 26:1377–1382.

    Article  CAS  PubMed  Google Scholar 

  49. Yagaloff KA, Hartig PR (1985): [I25I]-LSD binds to a novel serotonergic site on rat choroid plexus epithelial cells. /Neurosci 5: 3178–3183.

    CAS  PubMed  Google Scholar 

  50. Bockaert J, Premont J, Tassin JP, Hamon M, Deterre P, Ebersolt C, Prochiantz A (1982): Pharmacological characteristics and neuronal localization of dopamine- and serotonin-sensitive adenylate cyclases in rat brain and snail neurones, pp. 155–166 in: Dumont JE, Nunez J, Schultz G (eds), Hormones and Cell Regulation 6. Elsevier Biomed Press.

    Google Scholar 

  51. Andrade R, Nicoll RA (1987): Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond) 394: 99–124.

    CAS  Google Scholar 

  52. Andrade R, Malenka RC, Nicoll RA (1986): A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265.

    Article  CAS  PubMed  Google Scholar 

  53. Nicoll RA (1988): The coupling of neurotransmitter receptors to ion channels in the brain. Science241: 545–551.

    Article  CAS  PubMed  Google Scholar 

  54. Joëls M, Shinnick-Gallagher P, Gallagher JP (1987): Effect of serotonin and serotonin analogues on passive membrane properties of lateral septal neurons in vitro. Brain Research 417:99–107.

    Article  Google Scholar 

  55. Aghajanian GK, Lakoski JM (1984): Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+-conductance. Brain Research305: 181–185.

    Article  CAS  PubMed  Google Scholar 

  56. Vergé D, Daval G, Patey A, Gozlan H, Ei Mestikawy S, Hamon M (1985): Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Europ J Pharmacol113: 463–464.

    Article  Google Scholar 

  57. Weissmann-Nanopoulos D, Mach E, Magre J, Demassey Y, Pujol JF (1985): Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem Int7: 1061–1072.

    Article  CAS  PubMed  Google Scholar 

  58. Hutson PH, Dourish CT, Curzon G (1986): Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. Europ J Pharmacol129: 347 - 352.

    Article  CAS  Google Scholar 

  59. Carli M, Samanin R (1988): Potential anxiolytic properties of 8-hydroxy-2-(di-n- propylamino) tetralin, a selective serotonin1A receptor agonist. Psychopharmacology94: 84–91.

    Article  CAS  PubMed  Google Scholar 

  60. Invernizzi RW, Cervo L, Samanin R (1988): 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin,A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518.

    Article  CAS  PubMed  Google Scholar 

  61. Hutson PH, Donohoe TP, Curzon G (1987): Hypothermia induced by the putative 5-HT1A agonists LY 165163 and 8-OH-DPAT is not prevented by 5-HTdepletion. Europ J Pharmacol143: 221–228.

    Article  CAS  Google Scholar 

  62. Sprouse JS, Aghajanian GK (1987): Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse1: 3–9.

    Article  CAS  PubMed  Google Scholar 

  63. Martin KF, Mason R (1987): Isapirone is a partial agonist at 5-hydroxytryptamine1A (5-HT 1A) receptors in the rat hippocampus: electrophysiological evidence. Europ J Pharmacol141: 479–483.

    Article  CAS  Google Scholar 

  64. Andrade R, Nicoll RA (1987): Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol336: 5–10.

    Article  CAS  Google Scholar 

  65. Colino A, Halliwell JV (1986): 8-OH-DPAT is a strong antagonist of 5-HT action in rat hippocampus. Europ J Pharmacol 130:151–152.

    Article  CAS  Google Scholar 

  66. Smith LM, Peroutka SJ (1986): Differential effects of 5-hydroxytryptamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav24: 1513–1519.

    Article  CAS  PubMed  Google Scholar 

  67. Dumuis A, Sebben M, Bockaert J (1988): Pharmacology of 5-hydroxtryptamine1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol Pharmacol33: 178–186.

    CAS  PubMed  Google Scholar 

  68. Nelson DL, Taylor EW (1986): Spiroxatrine: a selective serotonin 1A receptor antagonist. Europ J Pharmacol124: 207–208.

    Article  CAS  Google Scholar 

  69. Herrick-Davis K, Titeler M (1988): [3H] spiroxatrine: a 5-HT1A radioligand with agonist binding properties. J Neurochem 50: 528–533.

    Article  CAS  PubMed  Google Scholar 

  70. Mir AK, Hibert M, Tricklebank MD, Middlemiss DN, Kidd EJ, Fozard JR (1988): MDL 72832: a potent and stereoselective ligand at central and peripheral 5-HT1A receptors. Europ J Pharmacol149: 107–120.

    Article  CAS  Google Scholar 

  71. Blier P, De Montigny C (1987): Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse1: 470–480.

    Article  CAS  PubMed  Google Scholar 

  72. Kennett, GA, Marcou M, Dourish CT, Curzon G (1987): Single administration of 5-HT1A agonists decreases 5-HT1A presynaptic, but not postsynaptic receptor-mediated responses: relationship to antidepressant-like action. Europ J Pharmacol 138: 53–60.

    Article  CAS  Google Scholar 

  73. Blier P, De Montigny C (1983): Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat. J Neurosciy. 1270–1278.

    CAS  PubMed  Google Scholar 

  74. Claustre Y, Rouquier L, Scatton B (1988): Pharmacological characterization of serotonin- stimulated phosphoinositide turnover in brain regions of the immature rat. J Pharmacol Exp Ther244: 1051–1056.

    CAS  PubMed  Google Scholar 

  75. Claustre Y, Bénavides J, Scatton B (1988): 5-HT1A receptor agonists inhibit carbachol- induced stimulation of phosphoinositide turnover in the rat hippocampus. Europ J Pharmacol 149:149–153.

    Article  CAS  Google Scholar 

  76. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric α;2-, ß 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science240: 1310–1316.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamon, M., Emerit, M.B., el Mestikawy, S., Gallissot, M.C., Gozlan, H. (1990). Regional differences in the transduction mechanisms of 5-hydroxytryptamine receptors in the mammalian brain. In: Saxena, P.R., Wallis, D.I., Wouters, W., Bevan, P. (eds) Cardiovascular Pharmacology of 5-Hydroxytryptamine. Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0479-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0479-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6701-0

  • Online ISBN: 978-94-009-0479-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics