Allosteric modulation of arterial 5-HT2 receptors

  • A. J. Kaumann
  • A. M. Brown
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)


Interaction of arterial 5-HT2 receptors with their ligands are variable and complex. Some produce a surmountable, apparently competitive inhibition of the effects of 5-hydroxytryptamine (5-HT), causing a simple rightward shift of the concentration-effect curve for 5-HT. Other antagonists cause a rightward shift of the concentration-effect curve and a depression of maximum responses to 5-HT which cannot be surmounted by increased concentrations of 5-HT. However, in some cases, the unsurmountable action of one antagonist can be prevented or reversed by exposure to another, surmountable antagonist.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaumann AJ, Frenken M (1985): A paradox: the 5-HT2 receptor antagonist ketanserin restores the 5-HT-induced contraction depressed by methysergide in large coronary arteries of calf. Allosteric regulation of 5-HT2 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 328: 295–300.CrossRefGoogle Scholar
  2. 2.
    Peroutka SJ, Snyder SH (1979): Multiple serotonin receptors: Differential binding of [3H]-5-hydroxy tryptamine [3H]lysergic acid diethylamide and [3H]-spiroperidol. Mol Pharmacol16: 687–699.PubMedGoogle Scholar
  3. 3.
    Clancy M, Maayani S (1985): 5-Hydroxytryptamine receptor in isolated rabbit aorta. Characterisation with tryptamine analogs. J Pharmacol Exp Ther233:761–769.PubMedGoogle Scholar
  4. 4.
    Frenken M, Kaumann AJ (1987): Interconversion into a low active state protects vascular 5-HT2 receptors against irreversible antagonism by phenoxybenzamine. Naunyn-Schmiedeberg’s Arch Pharmacol335: 481–490.Google Scholar
  5. 5.
    Van Nueten JM, Janssen PAJ, van Beck J, Xhonneux R, Verbeuren TJ, Vanhoutte PM (1981): Vascular effects of ketanserin (R 41468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther218: 217–230.PubMedGoogle Scholar
  6. 6.
    Kaumann AJ (1983): Yohimbine and rauwolscine inhibit 5-HT2 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol333: 149–154.CrossRefGoogle Scholar
  7. 7.
    Freedman SB, Chierchia S, Rodriguez-Plaza L, Burgiardini R, Smith G, Maseri A (1984): Ergonovine-induced myocardial ischaemia: no role for serotonergic receptors? Circulation70, 178–183.Google Scholar
  8. 8.
    Frenken M, Kaumann AJ (1985): Ketanserin causes surmountable antagonism of 5-hydroxytryptamine-induced contractions in large coronary arteries of dog. Naunyn-Schmiedeberg’s Arch Pharmacol328: 301–303.CrossRefGoogle Scholar
  9. 9.
    Frenken M, Kaumann AJ (1986): Surmountable antagonism by ketanserin of 5-hydroxy-tryptamine-induced contractions in dog basilar artery. Br J Pharmac89: 550 P.Google Scholar
  10. 10.
    Gaddum JH, Hameed KA (1954): Drugs which antagonize 5-hydroxytryptamine. Br J Pharmac9: 240–248.Google Scholar
  11. 11.
    Kaumann AJ (1989): The allosteric 5-HT2 receptor system, in: Fozard J (ed) The peripheral actions of 5-hydroxytryptamine. Oxford University Press pp. 45–71.Google Scholar
  12. 12.
    Kaumann AJ, Frenken M (1988): ICI 169,369 is both a competitive antagonist and an allosteric activator of the arterial 5-hydroxytryptamine2 receptor system. J Pharmacol Exp Ther245: 1010–1015.PubMedGoogle Scholar
  13. 13.
    Lemoine H, Kaumann AJ (1986): Allosteric properties of 5-HT2 receptors in tracheal smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol333: 91–97.CrossRefGoogle Scholar
  14. 14.
    Sampford KA, Kaumann AJ (1988): ICI 169,369 is both a competitive antagonist and activator of the 5-HT2 receptor system of guinea-pig trachea. Br J Pharmacol95: 775 P.Google Scholar
  15. 15.
    Frenken M, Kaumann AJ (1987): Allosteric properties of the 5-HT2 receptor system of the rat tail artery —Ritanserin and methysergide are not competitive 5-HT2 receptor antagonists but allosteric modulators. Naunyn-Schmiedeberg’s Arch Pharmacol335: 359–366.CrossRefGoogle Scholar
  16. 16.
    Blackburn TP, Thornber CW, Pearce RJ, Cox B (1988): In vitro pharmacology of ICI 170,809— a new 5-HT2 antagonist. Abstract. FASEB Journal5(2): A 1404.Google Scholar
  17. 17.
    Frenken M, Kaumann AJ (1989): Dimethylation of the activator ICI 169,369 results in a high-affinity partial deactivator, ICI 170,809, of the arterial 5-HT2 receptor system. J Pharmacol Exp Ther250: 707–713.PubMedGoogle Scholar
  18. 18.
    Kaumann AJ (1987): A two-state model for the 5-HT2 receptor. Biol Chem Hoppe-Seyler368: 1131–1132.CrossRefGoogle Scholar
  19. 19.
    Cohen ML, Fuller RW, Kurz KD (1983): LY 53857, a selective and potent serotonergic (5-HT2) receptor antagonist does not lower blood pressure in spontaneously hypertensive rat. J Pharmacol Exp Ther227: 327–332.PubMedGoogle Scholar
  20. 20.
    Barrett VJ, Leff P, Martin GR, Richardson PJ (1986): Pharmacological analysis of the interaction between Bay K8644 and 5-HT in rabbit aorta. Br J Pharmac87: 487–494.CrossRefGoogle Scholar
  21. 21.
    Frenken M, Kaumann AJ (198): Effects of tryptamine mediated through 2 states of the 5-HT2 receptor in calf coronary artery. Naunyn-Schmiedeberg’s Arch Pharmacol337: 484–492.CrossRefGoogle Scholar
  22. 22.
    Kaumann AJ (1988): A two-state model for the 5-HT2 receptor: Effects of a-adrenoceptor ligands. J Cardiovasc Pharmacol11 (suppl 1): S88– S92.PubMedCrossRefGoogle Scholar
  23. 23.
    Doyle VM, Creba JA, Ruegg UT, Hoyer D (1986): Serotonin increases production of inositol phosphates and mobilises calcium via the 5-HT2 receptor in A7r5 smooth muscle cells. Naunyn-Schmiedeberg’s Arch Pharmacol333: 98–103.CrossRefGoogle Scholar
  24. 24.
    Lemoine H, Pohl V, Teng KJ (1988): Serotonin (5-HT) stimulates phosphatidyl inositol (Pi) hydrolysis only through the R-state of allosterically regulated 5-HT2 receptors in calf tracheal smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol337: R103.Google Scholar
  25. 25.
    Nakaki T, Roth BL, Chuang DM, Costa E (1985): Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction. Participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther234: 442–446.PubMedGoogle Scholar
  26. 26.
    Lemoine H, Teng KJ (1989): A mathematical model describing the allosteric regulation of peripheral 5-HT2-receptors. Naunyn-Schmiedeberg’s Arch Pharmacol339: R97.Google Scholar
  27. 27.
    Kaumann AJ, Brown AM (1989): Differences between allosterism and incomplete equilibrium in the 5-HT2 system. Naunyn-Schmiedeberg’s Arch Pharmacol339: R97.Google Scholar
  28. 28.
    Frenken M, Kaumann AJ (1984): Interaction of ketanserin and its metabolite ketan-serinol with 5-HT2-receptors in pulmonary and coronary arteries of calf. Naunyn-Schmiedeberg’s Arch Pharmacol326: 334–339.CrossRefGoogle Scholar
  29. 29.
    Connor HE, FeniukW, Humphrey PPA (1989): 5-Hydroxytryptamine contracts human coronary arteries predominantly via 5-HT2 receptor activation. Eur J Pharmacol161: 91–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • A. J. Kaumann
  • A. M. Brown

There are no affiliations available

Personalised recommendations