Skip to main content

Mitochondrial injury in the oxygen-depleted and reoxygenated myocardial cell

  • Chapter
Pathophysiology of Severe Ischemic Myocardial Injury

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 104))

Abstract

The myocardium cannot maintain its normal energetic state without oxidative energy production by the mitochondria. Therefore, during insufficient oxygen supply, the myocardial cell becomes progressively depleted of its energy reserves and ultimately deteriorates. Recovery of the myocardium from a period of oxygen depletion requires sufficient preservation of mitochondrial function. Apart from their central role in energy metabolism, mitochondria also perform a vital function in cellular Ca2+ homeostasis, since the mitochondria represent the largest intracellular compartment for the sequestration of excess Ca2+ from the cytosol. Control of cytosolic Ca2+ concentration becomes disturbed in energy deficiency and can be re-normalized when mitochondrial energy production is restored. For these reasons, damage of the mitochondria may be of crucial importance for recovery from states of cellular oxygen deprivation (anoxia, ischemia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hatefi Y (1985) The mitochondrial electron transport chain and oxidative phosphorylation. Annu Rev Biochem 54: 1015–1069

    Article  PubMed  CAS  Google Scholar 

  2. Wittenberg BA, Wittenberg JB (1985) Oxygen pressure gradient in isolated cardiac myocytes. J Biol Chem 260: 6548–6554

    PubMed  CAS  Google Scholar 

  3. Chance B (1965) Reaction of oxygen with the respiratory chain in cells and tissue. J Gen Physiol 49: 163–188

    Article  PubMed  CAS  Google Scholar 

  4. DeGroot H, Noll T, Sies H (1985) Oxygen dependence and subcellular partitioning of hepatic menadione-mediated oxygen uptake. Arch Biochem Biophys 243: 556–562

    Article  CAS  Google Scholar 

  5. Fuchs J, Zimmer G, Bereiter-Hahn J (1987) A multiparameter analysis of the perfused rat heart: responses to ischemia, uncouplers and drugs. Cell Biochem Funct 5: 245–253 Drug Res 37: 1030–1034

    Article  PubMed  CAS  Google Scholar 

  6. Kübler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1: 351–377

    Article  PubMed  Google Scholar 

  7. Rovetto MJ, Lamberton WF, Neely JR (1973) Mechanism of glycolytic inhibition in ischemic rat hearts. Circ Res 37: 742–751

    Google Scholar 

  8. Wiesner RJ, Deussen A, Borst M, Schrader J, Grieshaber K (1989) Glutamate degradation in the ischemic dog heart: contribution to anaerobic energy production. J Mol Cell Cardiol 21: 49–59

    Article  PubMed  CAS  Google Scholar 

  9. Schwerzmann K, Pedersen P (1986) Regulation of the mitochondrial ATP Synthase/ATPase complex. Arch Biochem Biophys 250: 1–18

    Article  PubMed  CAS  Google Scholar 

  10. Gomez-Puyou MT, Martins OB, Gomez-Puyou A (1987) Synthesis and hydrolysis of ATP by the mitochondrial ATP synthase. Biochem Cell Biol 66: 677–682

    Article  Google Scholar 

  11. Haworth RA, Hunter DR, Berkoff HA (1981) Contracture in isolated adult rat heart cells: role of CA2+, ATP and compartmentation. Circ Res 49: 1119–1128

    PubMed  CAS  Google Scholar 

  12. Rouslin W, Erickson JL, Solaro RJ (1986) Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Am J Physiol 250: H503–H508

    PubMed  CAS  Google Scholar 

  13. Rouslin W (1983) Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5’-triphosphatase in ischemic and autolyzing cardiac muscle. J Biol Chem 258: 9657–9661

    PubMed  CAS  Google Scholar 

  14. Hatt PY, Moravec J (1971) Acute hypoxia of the myocardium. Ultrastructural changes. Cardiology 56: 73–84

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz P, Piper HM, Spahr R, Spieckermann PG (1984) Ultrastructure of adult myocardial cells during anoxia and reoxygenation. Am J Pathol 115: 349–361

    PubMed  CAS  Google Scholar 

  16. Hertsens RC, Bernaert I, Joniau M, Jacob WA (1986) Immunohistochemical investigation of native matrix granules of the rat heart mitochondrion. J Ultrastruct Mol Struct Res 94:1–15

    Article  PubMed  CAS  Google Scholar 

  17. Reimer KA, Jennings RB (1986) Myocardial ischemia, hypoxia and infarction. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The Heart and Cardiovascular System. New York, Raven Press, pp 1133–1201

    Google Scholar 

  18. Sjostrand F, Allen BS, Buckwald GD, Okamoto F, Young H, Bugyi H, Beyersdorf F, Barnard J, Leaf J (1986) Studies of controlled reperfusion after ischemia. IV. Electron microscopic studies: Importance of embedding techniques in quantitative evaluation of cardiac mitochondrial structure during regional ischemia and reperfusion. J Thorac Cardiovasc Surg 92: 513–524

    PubMed  CAS  Google Scholar 

  19. Siegmund B, Koop A, Klietz T, Schwartz P, Piper HM (1989) Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol 258: in press

    Google Scholar 

  20. Piper HM, Jacobson SL, Schwartz JL, Mealing GAR, Whitfield JF (1988) Disturbance of Ca2+ homeostasis in restrained cardiomyocytes under anoxia and reoxygenation. J Mol Cell Cardiol 20, suppl V: 35

    Article  Google Scholar 

  21. Trump BF, Mergner WJ, Kahng MW, Saladino AJ (1976) Studies on the subcellular pathophysiology of ischemia. Circulation 53, suppl I: 18–26

    Google Scholar 

  22. Jennings RB, Ganote CE (1976) Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res 38, suppl I: 180–190

    Google Scholar 

  23. Lochner A, Sanan D, Victor T, Bester R, Kotze JCN, van der Merwe N, Schabort I (1985) Mitochondrial and sarcolemmal function in the ischemic myocardium. In: Berman MC, Gevers W, Opie LH (eds) Membranes and Muscle. Oxford, IRL Press, pp 309–325

    Google Scholar 

  24. Bester R, Lochner A (1988) Sarcolemmal phospholipid fatty acid composition and permeability. Biochim Biophys Acta 941: 176–186

    Article  PubMed  CAS  Google Scholar 

  25. Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol 17: 186–198

    Google Scholar 

  26. Piper HM, Das A (1987) Detrimental actions of endogenous fatty acids and their derivatives. A study of ischaemic mitochondrial injury. Basic Res Cardiol 82, suppl 1: 187–196

    PubMed  CAS  Google Scholar 

  27. Asimakis GK, Conti VR (1984) Myocardial ischemia: correlation of mitochondrial adenine nucleotide and respiratory function. J Mol Cell Cardiol 16: 439–448

    Article  PubMed  CAS  Google Scholar 

  28. Asimakis GK, Sordahl LA (1981) Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria. Am J Physiol 241: H672–H681

    PubMed  CAS  Google Scholar 

  29. Asimakis GK, Wilson DE, Conti VR (1985) Release of AMP and adenosine from rat heart mitochondria. Life Sci 37: 2373–2380

    Article  PubMed  CAS  Google Scholar 

  30. Lochner A, van Niederkerk I, Whitesell LF (1981) Mitochondrial acyl-CoA, adenine nucleotide translocase activity and oxidative phosphorylation in myocardial ischemia. J Mol Cell Cardiol 13: 991–997

    Article  PubMed  CAS  Google Scholar 

  31. Kotaka K, Miyazaki Y, Ogawa K, Satake T, Sugiyama S, Ozawa T (1982) Reversal of ischemia-induced mitochondrial dysfunction after coronary reperfusion. J Mol Cell Cardiol 14: 223–231

    Article  PubMed  CAS  Google Scholar 

  32. Rouslin W (1983) Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am J Physiol 244: H743–H748

    PubMed  CAS  Google Scholar 

  33. Piper HM (1989) Energy deficiency, calcium overload or oxidative stress: Possible causes of irreversible ischemic myocardial injury. Klin Wschr 67: 465–476

    Article  PubMed  CAS  Google Scholar 

  34. Walsh LG, Tormey J McD (1988) Subcellular electrolyte shifts during in vitro myocardial ischemia and reperfusion. Am J Physiol 255: H197–H928

    Google Scholar 

  35. Garfinkel L, Altschuld RA, Garfinkel D (1986) Magnesium in cardiac energy metabolism. J Mol Cell Cardiol 18: 1003–1013

    Article  PubMed  CAS  Google Scholar 

  36. Jacobus WE, Tiozzo R, Lugli G, Lehninger AL, Carafoli E (1975) Aspects of energy-linked calcium accumulation by rat heart mitochondria. J Biol Chem 250: 7863–7870

    PubMed  CAS  Google Scholar 

  37. Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett. 111: 261–268

    Article  PubMed  CAS  Google Scholar 

  38. Carafoli E (1985) The homeostasis of calcium in heart cells. J Mol Cell Cardiol 17: 203–212

    Article  PubMed  CAS  Google Scholar 

  39. Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16

    PubMed  CAS  Google Scholar 

  40. Pande SV, Blanchaer MC (1971) Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem 246: 402–411

    PubMed  CAS  Google Scholar 

  41. Shug AL, Lerner C, Elson O, Shrago E (1971) The inhibition of adenine nucleotide translocase by oleoyl CoA and its reversal in rat liver mitochondria. Biochem Biophys Res Commun 43: 557–563

    Article  PubMed  CAS  Google Scholar 

  42. Shug AL, Shrago E, Bittar N, Folts JD, Roke JR (1975) Acyl CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol 228: 689–692

    PubMed  CAS  Google Scholar 

  43. Idell-Wenger JA, Grotyohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253: 4310–4318

    PubMed  CAS  Google Scholar 

  44. Woldegiorgis G, Shrago E (1979) The recognition of two specific binding sites of the adenine nucleotide translocase by palmityl CoA in bovine heart mitochondria and submitochondrial particles. Biochem Biophys Res Commun 89: 837–844

    Article  PubMed  CAS  Google Scholar 

  45. Glatz JFC, Veerkamp JH (1985) Intracellular fatty acid binding proteins. Int J Biochem 17: 13–22

    Article  PubMed  CAS  Google Scholar 

  46. LaNoue KF, Watts JA, Koch CD (1981) Adenine nucleotide transport during cardiac ischemia. Am J Physiol 241: H663–H671

    PubMed  CAS  Google Scholar 

  47. Harris EJ (1979) Modulation of Ca2+ efflux from heart mitochondria. Biochem J 178: 673–680

    PubMed  CAS  Google Scholar 

  48. Harris EJ, Cooper MB (1981) Calcium and magnesium losses in response to stimulants of efflux applied to heart, liver and kidney mitochondria. Biochem Biophys Res Commun 788–796

    Google Scholar 

  49. Sordahl LA, Stewart ML (1980) Mechanism(s) of altered mitochondrial calcium transport in acutely ischemic canine hearts. Circ Res 47: 814–820

    PubMed  CAS  Google Scholar 

  50. Le Quoc K, Le Quoc D (1988) Involvement of the ATP/ADP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: Importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265: 249–257

    Article  PubMed  Google Scholar 

  51. Carbonera D, Azzone GF (1988) Permeability of inner mitochondrial membrane and oxidative stress. Biochim Biophys Acta 943: 245–255

    Article  PubMed  CAS  Google Scholar 

  52. D’Souza MP, Wilson DF (1982) Adenine nucleotide efflux in mitochondria induced by inorganic pyrophosphate. Biochim Biophys Acta 680: 28–32

    Article  PubMed  Google Scholar 

  53. Palmer JW, Pfeiffer DR (1981) The control of Ca2+ release from heart mitochondria. J Biol Chem 256: 6742–6750

    PubMed  CAS  Google Scholar 

  54. Beatrice MC, Stiers O, Pfeiffer DR (1982) Increased permeability of mitochondria during Ca2+ release induced by t-butyl hydroperoxide or oxalacetate. J Biol Chem 257: 7161–7171

    PubMed  CAS  Google Scholar 

  55. Richter C, Frei B (1988) Ca2+ release from mitochondria induced by prooxidants. Free Rad Biol Med 4: 365–375

    Article  PubMed  CAS  Google Scholar 

  56. Lehninger AL, Vercesi A, Bababunmi EA (1978) Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci USA 75: 1690–1694

    Article  PubMed  CAS  Google Scholar 

  57. Lochner A, van der Merwe N, de Villiers M, Steinmann C, Kotze JCN (1987) Mitochondrial Ca2+ fluxes and levels during ischaemia and reperfusion: possible mechanisms. Biochim Biophys Acta 927: 8–17

    Article  PubMed  CAS  Google Scholar 

  58. Ashraf M, Bloor CM (1976) X-ray microanalysis of mitochondrial deposits in ischemic myocardium. Virchows Arch B Cell Pathol 22: 287–297

    PubMed  CAS  Google Scholar 

  59. Peng CF, Kane JJ, Murphy ML, Straub KD (1977) Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca2+-chelating agents. J Mol Cell Cardiol 9: 897–908

    Article  PubMed  CAS  Google Scholar 

  60. Ferrari R, Williams A, Di Lissa F (1988) The role of mitochondrial function in the ischemic and reperfused myocardium. In: Caldarera CM, Harris P (eds) Advances in Studies on Heart Metabolism. Bologna, CLUEB, pp 245–255

    Google Scholar 

  61. Ferrari R, Di Lissa F, Raddino R, Visioli O (1982) The effects of ruthenium red on mitochondrial function during post-ischemic reperfusion. J Mol Cell Cardiol 14: 737–740

    Article  PubMed  CAS  Google Scholar 

  62. Coll KE, Joseph SK, Corkey BE, Williamson JR (1982) Determination of free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J Biol Chem 257: 8696–8704

    PubMed  CAS  Google Scholar 

  63. Piper HM, Das D (1986) The role of fatty acids in ischemic tissue injury: difference between oleic and palmitic acid. Basic Res Cardiol 81: 373–383

    Article  PubMed  CAS  Google Scholar 

  64. Nagami M, Yoshida S, Saitoh T, Takeshita M, Ogawa T (1988) Effect of oleic acid on mitochondrial cytochrome c oxidase activity. Biochem Int 17: 763–771

    PubMed  CAS  Google Scholar 

  65. Spector AA, Brennan DE (1972) Effect of free fatty acid structure on binding to rat liver mitochondria. Biochim Biophys Acta 260: 433–438

    PubMed  CAS  Google Scholar 

  66. Piper HM, Sezer O, Schwartz P, Hütter JF, Spieckermann PG (1983) Fatty acid-membrane interactions in isolated cardiac mitochondria and erythrocytes. Biochim Biophys Acta 732: 193–203

    Article  PubMed  CAS  Google Scholar 

  67. Piper HM, Sezer O, Schwartz P, Hütter JF, Schweickhardt C, Spieckermann PG (1984) Acyl-carnitine effects on isolated cardiac mitochondria and erythrocytes. Basic Res Cardiol 79: 186–198

    Article  PubMed  CAS  Google Scholar 

  68. Slater TF (1984) Free radical mechanisms in tissue injury. Biochem J 222: 1–15

    PubMed  CAS  Google Scholar 

  69. Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Phil Trans R Soc Lond B 311: 617–631

    Article  CAS  Google Scholar 

  70. Guarnieri C, Flamigni F, Caldarera CM (1980) Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol 12: 797–808

    Article  PubMed  CAS  Google Scholar 

  71. Meerson FZ, Kagan VE, Kozlov YP, Belkina LM, Arkhipenko YV (1982) The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res Cardiol 77: 465–485

    Article  PubMed  CAS  Google Scholar 

  72. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O (1985) Oxygen-mediated myocardial damage during ischemia and reperfusion: role of cellular defences against oxygen toxicity. J Mol Cell Cardiol 17: 973–945

    Article  Google Scholar 

  73. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191: 421–427

    PubMed  CAS  Google Scholar 

  74. Nohl H, Jordan W, Hegner D (1982) Mitochondrial formation of OH radicals by an ubisemiquinone-dependent reaction. An alternative pathway to the iron-catalysed Haber-Weiss cycle. Hoppe-Seyler’s Z. Physiol Chem 363: 599–607

    Article  PubMed  CAS  Google Scholar 

  75. Nohl H, Jordan W (1986) The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 138: 533–539

    Article  PubMed  CAS  Google Scholar 

  76. Nohl H (1987) A novel superoxide radical generator in heart mitochondria. FEBS Lett 214: 269–273.

    Article  PubMed  CAS  Google Scholar 

  77. Arroyo CM, Kramer JH, Leiboff RH, Mergner GW, Dickens BF, Weglicki WB (1987) Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Rad Biol Med 3: 313–316

    Article  PubMed  CAS  Google Scholar 

  78. McCord JM (1988) Free radicals and myocardial ischemia: Overview and outlook. Free Rad Biol Med 4: 9–14

    Article  PubMed  CAS  Google Scholar 

  79. Shlafer M, Myers CL, Adkins S (1987) Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dismutase following global ischemia. J Mol Cell Cardiol 19, 1195–1206

    Article  PubMed  CAS  Google Scholar 

  80. Otani H, Tanaka H, Inoue T, Umemoto M, Omoto K, Tanaka K, Sato T, Osako T, Masuda A, Nonoyama A, Kagawa T (1984) In vitro study on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. Circ Res 55: 168–175

    PubMed  CAS  Google Scholar 

  81. Malis CD, Bonventre JV (1986) Mechanisms of calcium potentiation of oxygen free radical injury to renal mitochondria. J Biol Chem 261: 14201–14208

    PubMed  CAS  Google Scholar 

  82. Braunwal E, Kloner RA (1982) The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 66: 1146–1149

    Article  Google Scholar 

  83. Ambrosio G, Jacobus WE, Bergman CA, Weisman HF, Becker LC (1987) Preserved high-energy phosphate metabolic reserve in globally’ stunned’ hearts despite reduction of basal ATP content and contractility. J Moll Cell Cardiol 19: 953–964

    Article  CAS  Google Scholar 

  84. Sako EY, Kingsley-Hickman PB, From AHL, Foker JE, Ugurbil K (1988) ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studies by 31P NMR. J Biol Chem 263: 10600–10607

    PubMed  CAS  Google Scholar 

  85. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62: 535–542

    PubMed  CAS  Google Scholar 

  86. Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of mitochondrial enzyme release. J Mol Cell Cardiol 5: 395–407

    Article  PubMed  CAS  Google Scholar 

  87. Ganote CE (1983) Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol 15: 67–73

    Article  PubMed  CAS  Google Scholar 

  88. Veech RL, Lawson JWR, Cornell NW, Krebs HA (1979) Cytosolic phosphorylation potential. J Biol Chem 254: 551–561

    Google Scholar 

  89. Siegmund B, Koop A, Piper HM (1989) The use of the creatine kinase reaction to determine free energy change of ATP hydrolysis in anoxic cardiomyocytes. Pflügers Arch 413: 435–437

    Article  PubMed  CAS  Google Scholar 

  90. McDonough KH, Spitzer JJ (1983) Effects of hypoxia and reoxygenation on adult rat heart cell metabolism. Proc Soc Exp Biol Med 173: 519–526

    PubMed  CAS  Google Scholar 

  91. Cheung JY, Leaf A, Bonventre JV (1986) Mitochondrial function and intracellular calcium in anoxic cardiac myocytes. Am J Physiol 250: C18–C25

    PubMed  CAS  Google Scholar 

  92. Allshire A, Piper HM, Cuthbertson KSR, Cobbold PH (1987) Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J 244: 381–385

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Piper, H.M. (1990). Mitochondrial injury in the oxygen-depleted and reoxygenated myocardial cell. In: Piper, H.M. (eds) Pathophysiology of Severe Ischemic Myocardial Injury. Developments in Cardiovascular Medicine, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0475-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0475-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0459-3

  • Online ISBN: 978-94-009-0475-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics