Skip to main content

Myocardial release of hypoxanthine and urate during angioplasty

Potential mechanism for free radical generation

  • Chapter
  • 37 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 101))

Abstract

Oxygen free radicals have been implicated in ageing, oncogenesis and atherogenesis [1], One potential source is xanthine oxidase, the oxyradical-producing form of xanthine oxidoreductase. This enzyme catabolizes the high-energy-phosphate metabolites hypoxanthine and xanthine to urate (Fig. 1). Ischemia converts the native form of the enzyme, xanthine reductase, to xanthine oxidase [2]. During reperfusion oxygen is available for the production of superoxide and hydroxyl radicals [3, 4], both of which are strongly suspected to cause tissue damage [3, 5–7]. Xanthine oxidoreductase activity is present in the myocardium of a number of species [8], but its presence in human heart is controversial. In autopsy material several authors measured high xanthine oxidoreductase activity [9, 10]. Using histochemical techniques, Jarasch and coworkers found large amounts of the enzyme in human heart endothelium [11]. On the other hand, several authors reported very low to undetectable xanthine oxidoreductase activity in human heart [12–14]. We present evidence that the heart of (a number of) cardiac patients produces significant amounts of urate. Thus xanthine oxidoreductase may be active in the human heart in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hearse DJ, Manning AS, Downey JM, Yellon DM (1986) Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol Scand 548 (Suppl): 65 - 78.

    CAS  Google Scholar 

  2. McCord JM (1984) Are free radicals a major culprit? In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation, pp. 209 - 218 New York: Raven Press

    Google Scholar 

  3. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17: 141 - 152

    Article  Google Scholar 

  4. Van der Vusse GJ, Reneman RS (1985) Pharmacological intervention in acute myocardial ischemia and reperfusion. Trends Pharmacol Sei 6: 76 - 79

    Article  Google Scholar 

  5. England MD, Cavarocchi NC, O’Brien JF, Sollis V, Pluth JR, Orszulak TA, Kaye MP, Schaff HV (1986) Influence of antioxidants (mannitol and allopurinol) on oxygen free radical generation during and after cardiopulmonary bypass. Circulation 74 (Suppl 3): 134 - 137

    Google Scholar 

  6. Peterson DA, Asinger RW, Elsperger KJ, Homans DC, Eaton JW (1985) Reactive oxygen species may cause myocardial reperfusion injury. Biochem Biophys Res Commun 127: 87 - 93

    Article  PubMed  CAS  Google Scholar 

  7. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sei USA 84: 1404 - 1407

    Article  CAS  Google Scholar 

  8. Schoutsen B, De Jong JW (1987) Age-dependent increase in xanthine oxidoreductase differs in various heart cell types. Circ Res 61: 604 - 607

    PubMed  CAS  Google Scholar 

  9. Krenitsky TA, Tuttle JV, Cattau EL, Wang P (1974) A comparison of the distribution and electron acceptor specificities of xanthine oxidase and aldehyde oxidase. Comp Biochem Physiol 49B: 687 - 703

    Article  CAS  Google Scholar 

  10. Wajner M, Harkness RA (1988) Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochem Soc Trans 16: 358 - 359

    CAS  Google Scholar 

  11. Jarasch ED, Bruder G, Heid HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand 548 (Suppl): 39 - 46

    CAS  Google Scholar 

  12. Eddy LJ, Stewart JR, Jones HP, Engerson TD, McCord JM, Downey JM (1987) Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol 253: H709 - 711

    PubMed  CAS  Google Scholar 

  13. Ramboer CRH (1969) A sensitive and nonradioactive assay for serum and tissue xanthine oxidase. J Lab Clin Med 74: 828 - 835

    PubMed  CAS  Google Scholar 

  14. Muxfeldt M, Schaper W (1987) The activity of xanthine oxidase in hearts of pigs, guinea pigs, rats, and humans. Basic Res Cardiol 82: 486 - 492

    Article  PubMed  CAS  Google Scholar 

  15. Nelson JA, McDaniel HG, Maurer BJ, Hill WA, James TN (1977) Apparent uptake of purines by the human heart ( Letter to the ed ). N Eng J Med 296: 115

    CAS  Google Scholar 

  16. Czarnecki W (1988) Apparent inosine incorporation and concomitant haemodynamic improvement in human heart. In: De Jong JW (ed) Myocardial Energy Metabolism pp. 257–264 Dordrecht: Martinus Nijhoff Publishers (DICM 91)

    Chapter  Google Scholar 

  17. Scheibe B, Bernt E, Bergmeyer H-U (1974) Uric acid. In: Bergmeyer H-U (ed) Methods of Enzymatic Analysis, pp. 1951 - 1958 New York: Academic Press

    Google Scholar 

  18. Harmsen E, De Jong JW, Serruys PW (1981) Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 115: 73 - 84

    Article  PubMed  CAS  Google Scholar 

  19. Edlund A, Berglund B, Van Dorne D, Kaijser L, Nowak J, Patrono C, Sollevi A, Wennmalm A (1985) Coronary flow regulation in patients with ischemic heart disease: release of purines and prostacyclin and the effect of inhibitors of prostaglandin formation. Circulation 71: 1113 - 1120

    Article  PubMed  CAS  Google Scholar 

  20. Ontyd J, Schräder J (1984) Measurement of adenosine, inosine and hypoxanthine in human plasma. J Chromatogr 307: 404 - 409

    Article  PubMed  CAS  Google Scholar 

  21. Downey JM, Chambers DE, Miura T, Yellon DM, Jones D (1986) Allopurinol fails to limit infarct size in a xanthine oxidase deficient species (abstr). Circulation 74 (Suppl 2): 372

    Google Scholar 

  22. Podzuweit T, Braun W, Müller A, Schaper W (1986) Arrhythmias and infarction in the ischemic pig heart are not mediated by xanthine oxidase-derived free oxygen radicals (abstr). Circulation 74 (Suppl 2): 346

    Google Scholar 

  23. Watts RWE, Watts JEM, Seegmiller JE (1965) Xanthine oxidase activity in human tissues and its inhibition by allopurinol. J Lab Clin Med 66: 688 - 697

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

De Jong, J.W., Huizer, T., Nelson, J.A., Czarnecki, W., Bonnier, J.J.R.M., Serruys, P.W. (1990). Myocardial release of hypoxanthine and urate during angioplasty. In: Serruys, P.W., Simon, R., Beatt, K.J. (eds) PTCA An Investigational Tool and a Non-Operative Treatment of Acute Ischemia. Developments in Cardiovascular Medicine, vol 101. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0453-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0453-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6688-4

  • Online ISBN: 978-94-009-0453-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics