Myocardial release of hypoxanthine and urate during angioplasty

Potential mechanism for free radical generation
  • Jan Willem De Jong
  • Tom Huizer
  • J. Arly Nelson
  • Wlodzimierz Czarnecki
  • Johannes J. R. M. Bonnier
  • Patrick W. Serruys
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 101)


Oxygen free radicals have been implicated in ageing, oncogenesis and atherogenesis [1], One potential source is xanthine oxidase, the oxyradical-producing form of xanthine oxidoreductase. This enzyme catabolizes the high-energy-phosphate metabolites hypoxanthine and xanthine to urate (Fig. 1). Ischemia converts the native form of the enzyme, xanthine reductase, to xanthine oxidase [2]. During reperfusion oxygen is available for the production of superoxide and hydroxyl radicals [3, 4], both of which are strongly suspected to cause tissue damage [3, 5–7]. Xanthine oxidoreductase activity is present in the myocardium of a number of species [8], but its presence in human heart is controversial. In autopsy material several authors measured high xanthine oxidoreductase activity [9, 10]. Using histochemical techniques, Jarasch and coworkers found large amounts of the enzyme in human heart endothelium [11]. On the other hand, several authors reported very low to undetectable xanthine oxidoreductase activity in human heart [12–14]. We present evidence that the heart of (a number of) cardiac patients produces significant amounts of urate. Thus xanthine oxidoreductase may be active in the human heart in vivo.


Leave Anterior Descend Xanthine Oxidase Human Heart Xanthine Dehydrogenase Urate Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hearse DJ, Manning AS, Downey JM, Yellon DM (1986) Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol Scand 548 (Suppl): 65 - 78.Google Scholar
  2. 2.
    McCord JM (1984) Are free radicals a major culprit? In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation, pp. 209 - 218 New York: Raven PressGoogle Scholar
  3. 3.
    Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17: 141 - 152CrossRefGoogle Scholar
  4. 4.
    Van der Vusse GJ, Reneman RS (1985) Pharmacological intervention in acute myocardial ischemia and reperfusion. Trends Pharmacol Sei 6: 76 - 79CrossRefGoogle Scholar
  5. 5.
    England MD, Cavarocchi NC, O’Brien JF, Sollis V, Pluth JR, Orszulak TA, Kaye MP, Schaff HV (1986) Influence of antioxidants (mannitol and allopurinol) on oxygen free radical generation during and after cardiopulmonary bypass. Circulation 74 (Suppl 3): 134 - 137Google Scholar
  6. 6.
    Peterson DA, Asinger RW, Elsperger KJ, Homans DC, Eaton JW (1985) Reactive oxygen species may cause myocardial reperfusion injury. Biochem Biophys Res Commun 127: 87 - 93PubMedCrossRefGoogle Scholar
  7. 7.
    Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sei USA 84: 1404 - 1407CrossRefGoogle Scholar
  8. 8.
    Schoutsen B, De Jong JW (1987) Age-dependent increase in xanthine oxidoreductase differs in various heart cell types. Circ Res 61: 604 - 607PubMedGoogle Scholar
  9. 9.
    Krenitsky TA, Tuttle JV, Cattau EL, Wang P (1974) A comparison of the distribution and electron acceptor specificities of xanthine oxidase and aldehyde oxidase. Comp Biochem Physiol 49B: 687 - 703CrossRefGoogle Scholar
  10. 10.
    Wajner M, Harkness RA (1988) Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochem Soc Trans 16: 358 - 359Google Scholar
  11. 11.
    Jarasch ED, Bruder G, Heid HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand 548 (Suppl): 39 - 46Google Scholar
  12. 12.
    Eddy LJ, Stewart JR, Jones HP, Engerson TD, McCord JM, Downey JM (1987) Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol 253: H709 - 711PubMedGoogle Scholar
  13. 13.
    Ramboer CRH (1969) A sensitive and nonradioactive assay for serum and tissue xanthine oxidase. J Lab Clin Med 74: 828 - 835PubMedGoogle Scholar
  14. 14.
    Muxfeldt M, Schaper W (1987) The activity of xanthine oxidase in hearts of pigs, guinea pigs, rats, and humans. Basic Res Cardiol 82: 486 - 492PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson JA, McDaniel HG, Maurer BJ, Hill WA, James TN (1977) Apparent uptake of purines by the human heart ( Letter to the ed ). N Eng J Med 296: 115Google Scholar
  16. Czarnecki W (1988) Apparent inosine incorporation and concomitant haemodynamic improvement in human heart. In: De Jong JW (ed) Myocardial Energy Metabolism pp. 257–264 Dordrecht: Martinus Nijhoff Publishers (DICM 91)CrossRefGoogle Scholar
  17. 17.
    Scheibe B, Bernt E, Bergmeyer H-U (1974) Uric acid. In: Bergmeyer H-U (ed) Methods of Enzymatic Analysis, pp. 1951 - 1958 New York: Academic PressGoogle Scholar
  18. 18.
    Harmsen E, De Jong JW, Serruys PW (1981) Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 115: 73 - 84PubMedCrossRefGoogle Scholar
  19. 19.
    Edlund A, Berglund B, Van Dorne D, Kaijser L, Nowak J, Patrono C, Sollevi A, Wennmalm A (1985) Coronary flow regulation in patients with ischemic heart disease: release of purines and prostacyclin and the effect of inhibitors of prostaglandin formation. Circulation 71: 1113 - 1120PubMedCrossRefGoogle Scholar
  20. 20.
    Ontyd J, Schräder J (1984) Measurement of adenosine, inosine and hypoxanthine in human plasma. J Chromatogr 307: 404 - 409PubMedCrossRefGoogle Scholar
  21. 21.
    Downey JM, Chambers DE, Miura T, Yellon DM, Jones D (1986) Allopurinol fails to limit infarct size in a xanthine oxidase deficient species (abstr). Circulation 74 (Suppl 2): 372Google Scholar
  22. 22.
    Podzuweit T, Braun W, Müller A, Schaper W (1986) Arrhythmias and infarction in the ischemic pig heart are not mediated by xanthine oxidase-derived free oxygen radicals (abstr). Circulation 74 (Suppl 2): 346Google Scholar
  23. 23.
    Watts RWE, Watts JEM, Seegmiller JE (1965) Xanthine oxidase activity in human tissues and its inhibition by allopurinol. J Lab Clin Med 66: 688 - 697PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Dordrecht 1990

Authors and Affiliations

  • Jan Willem De Jong
  • Tom Huizer
  • J. Arly Nelson
  • Wlodzimierz Czarnecki
  • Johannes J. R. M. Bonnier
  • Patrick W. Serruys

There are no affiliations available

Personalised recommendations