Advertisement

Low Dielectric Constant Materials for Packaging High Speed Electronics

  • Melvin P. Zussman

Abstract

Dielectric materials used for electronics packaging serve mechanical, thermal and electrical functions. In functioning as electrical insulation, a dielectric can be characterized by its dielectric constant, with the related properties of volume resistivity and dissipation factor, and by its dielectric strength. The dielectric constant (as well as dissipation factor and volume resistivity) describe the interaction of a dielectric material with an electric field; the dielectric strength defines a limiting electric field gradient above which the interaction of the dielectric with the field causes an irreversible change in the dielectric. Values of these properties for commercially important dielectric materials are shown in Table 8.1.

Keywords

Dielectric Constant Volume Resistivity Cyanate Ester Print Wiring Board Cyanate Ester Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Blech, “Properties of Materials” in Electronics Engineers Handbook 3 ’rd Edition, edited by D.G. Fink and D. Christiansen, (McGraw-Hill, New York, 1989) Sec. 6Google Scholar
  2. 2.
    “Di-Clad® 522 and 527 woven PTFE composite laminates”, Keene Corporation, Technical bulletin code #1065Google Scholar
  3. 3.
    “G-30 Polyimide laminates and prepreg for multilayer”, Norplex/Oak product Bulletin No. 2002 5/1/87Google Scholar
  4. 4.
    R. C. Buchanan, In Ceramic Materials for Electronics, edited by R.C. Buchanan (Marcel Dekker: New York, 1986), Chapter 1.Google Scholar
  5. 5.
    J. J. Licari, Plastic Coatings for Electronics, (Robert E. Krieger: Malabar, FL 1981) Chapter 2Google Scholar
  6. 6.
    H. Fröhlich, Theory of Dielectrics - Dielectric Constant and Dielectric Loss, (Oxford University Press, Oxford, 1958)zbMATHGoogle Scholar
  7. 7.
    A. R. Von Hippel, in Dielectric Materials and Applications, edited by A.R. Von Hippel (MIT Press: Cambridge, MA, 1954), Chapter 1.Google Scholar
  8. 8.
    T. W. Bates, in Fluoropolymers, edited by L.A. Wall (John Wiley & Sons:New York, 1972) Chapter 14.Google Scholar
  9. 9.
    R. E. Schramm, A. F. Clark, and R. P. Reed, in A Compilation and Evaluation of Mechanical, Thermal and Electrical Properties of Selected Polymers, (U.S. National Bureau of Standards, 1972) p. 17.Google Scholar
  10. 10.
    A. K. St. Clair, T. L. St. Clair and W. P. Winfree, “Process for preparing low dielectric polyimides”, European Patent Appl. 0 299 865 A2 (January 1989).Google Scholar
  11. 11.
    E. D. Wachsman, P. S. Martin and C. W. Frank, “Cure studies of PMDA-ODA- and BTDA-ODA-based polyimides by fluorescence spectroscopy”, in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 2.Google Scholar
  12. 12.
    A. J. Beuhler, N. R. Nowicki and J. M. Gaudette, “Dielectric characterization of water in polyimide and poly(amide-imide) thin films”, in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 5.Google Scholar
  13. 13.
    J. M. Butler, R. P. Chartoff, and B. J. Kinzig, “Some approaches to low dielectric constant matrix resins for printed circuit boards”, presented at 15th National SAMPE Technical Confer.,Cincinatti OH, October 1983.Google Scholar
  14. 14.
    J. R. Paulus, “High performance laminate systems for high speed electronics Applications”, Circuit World 15(4), 19–24 (1989)CrossRefGoogle Scholar
  15. 15.
    A. L. M. Angstenberger, “The impact of microwave theory on MLBs for high speed digital applications - design, production, qualification”, Printed Circuit World Convention IV, June, 1987; WCIV-31.Google Scholar
  16. 16.
    E. Abramson, “Improved high speed interconnects with Du Pont flexible fluoropolymer laminates”, Electronics Packaging & Production, in press.Google Scholar
  17. 17.
    D. J. Arthur, “Electrical and Mechanical Characteristics of Low Dielectric Constant Printed Wiring Boards”, presented at IPC 29th annual meeting, April 1986, Boston, MA, IPC-TP-585Google Scholar
  18. 18.
    S. J. Mumby,“An overview of laminate materials with enhanced dielectric Properties”, J. Electronic Materials 18(2),241–250 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    R. F. Field, “Lumped circuits”, in Dielectric Materials and Applications, edited by A.R. Von Hippel (MIT Press: Cambridge, MA, 1954), Chapter II.A.1.Google Scholar
  20. 20.
    W. B. Westphal, “Distributed circuits” in Dielectric Materials and Applications, edited by A.R. Von Hippel (MIT Press: Cambridge, MA, 1954), Chapter II.A.2.Google Scholar
  21. 21.
    R. K. Hoffmann, Handbook of Microwave Integrated Circuits, translated by G.A. Ediss and N.J. Keen, edited by H.H. Howe, Jr. (Artech House, Norwood, MA, 1987) Chapter 7.Google Scholar
  22. 22.
    ASTM D3380-89 “Standard test method for elative permittivity (dielectric constant) and dissipation factor of polymer based microwave circuit substrates”, in 1989 Annual Book of ASTM Standards vol. 10.02, (Amer. Soc.Test. Matls., Philadelphia, 1989) pp 323 - 332.Google Scholar
  23. 23.
    ASTM D2520 “Standard test methods for complex permittivity (dielectric constant) of solid electrical insulating materials at microwave frequencies and temperatures to 1650iC”, in 1989 Annual Book of ASTM Standards vol. 10.02, (Amer. Soc. Test. Matls., Philadelphia, 1989) pp 210-225.Google Scholar
  24. 24.
    D. C. Dube, M. T. Lanagan, J. H. Kim and S. J. Jang, “Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique”, J. Appl. Phys. 63(7) pp. 2466–2468 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    H. Fellner-Feldegg, “The measurement of dielectrics in the time domain”, J. Phys. Chem. 73(3) pp 616–623 (1969).CrossRefGoogle Scholar
  26. 26.
    “Q Meter 4342A Operating and Service Manual”, Yokogawa-Hewlett Packard, Tokyo, Japan 1970.Google Scholar
  27. 27.
    ASTM D150-87 “Standard test methods for A-C loss characteristics and permittivity (dielectric constant) of solid electrical insulating materials”, in 1989 Annual Book of ASTM Standards vol. 10.02, (Amer. Soc. Test. Matls., Philadelphia, 1989) pp 17-35.Google Scholar
  28. 28.
    “4262A Digital LCR Meter, Operating and Service Manual”, Yokogawa-Hewlett Packard, Tokyo, Japan 1977.Google Scholar
  29. 29.
    H. S. Hartmann and C. L. Booth, “Development of a crystallizable low-k low-loss low temperature multilayer interconnect system”, presented at ISM meeting, May 1990, Tokyo.Google Scholar
  30. 30.
    B. Schwartz, “Review of multilayer ceramics for microelectronic packaging”, J. Phys. & Chem. Solids 45(10), pp. 1051–1068 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    N. Kamehara, K. Niwa and K. Murakawa, “Packaging material for high speed Computers”, IMC Proceedings, Tokyo, May 1982, pp. 382–393Google Scholar
  32. 32.
    T. S. Laverghetta, Microwave Materials and Fabrication Techniques (Artech House: Dedham, MA 1984) p. 26.Google Scholar
  33. 33.
    D. C. England, R. E. Uschold, H. Starkweather and R. Pariser, Proceedings of The Robert A. Welch Conferences on Chemical Research XXVI. Synthetic Polymers, Houston,TX, 1982 pp. 203-215.Google Scholar
  34. 34.
    S. V. Gangal, in Kirk-Qthmer Encyclopedia of Chemical Technology, Third Ed. 11 (John Wiley & Sons, 1980) pp. 1-35.Google Scholar
  35. 35.
    P. R. Resnick, “The preparation and properties of a new family of amorphous fluoropolymers: Teflon® AF”, Polymer Preprints 31(1) p 312 (1990).Google Scholar
  36. 36.
    “Teflon® AF Amorphous Fluoropolymer”, Du Pont product brochure H-16577-1, 12/89.Google Scholar
  37. 37.
    M. Szwarc, “Poly-para-xylelene: its chemistry and application in coating Technology”, Polymer Eng. Sci. 16(7), pp 473–479 (1976).CrossRefGoogle Scholar
  38. 38.
    W. F. Beach and T. M. Austin, “Update: parylene as a dielectric for the next generation of high density circuits”, SAMPE Journal 24(6) pp 9–12 (1988).Google Scholar
  39. 39.
    A. K. St.Clair, T. L. St.Clair and W. P. Winfree, “Low dielectric polyimides for electronic applications”, Polym. Mater. Sci. Eng. 59, p. 28–32 (1988).Google Scholar
  40. 40.
    D. M. Stoakley and A. K. St. Clair, “Effect of diamic acid additives on dielectric constants of polyimides”, in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 7.Google Scholar
  41. 41.
    D. L. Goff, E. L. Yuan, H. Long and H. J. Neuhaus, “Organic dielectric materials with reduced moisture absorption and improved electrical properties”, in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 8.Google Scholar
  42. 42.
    C. C. Schuckert, G. B. Fox and B. T. Merriman, “The evolution of packaging Dielectrics” presented at the Second Du Pont Symposium on High Density Interconnect Technology; Wilmington, DE, 1988.Google Scholar
  43. 43.
    A. J. Beuhler, M. J. Burgess, D. E. Fjare, J. M. Gaudette and R. T. Roginski, “Moisture and purity in polyimide coatings”, Mat. Res. Soc. Symp. Proc. 154 pp. 73–90 (1989).CrossRefGoogle Scholar
  44. 44.
    P. P. Policastro, J. H. Lupinski and P. K. Hernandez, “Siloxane polyimides for interlayer dielectric applications”in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 12.Google Scholar
  45. 45.
    C. A. Arnold, Y. P. Chen, D. H. Chen, M. E. Rogers and J. E. McGrath, “Low dielectric, hydrophobic polyimide homopolymers and poly (siloxane imide) segmented copolymers for electronics applications”, Mat. Res. Soc. Symp. Proc. 154 pp. 149–160 (1989).CrossRefGoogle Scholar
  46. 46.
    C. A. May, “Epoxy resins”, in Engineered Materials Handbook™ Volume I (ASM International, 1987) pp 66-77.Google Scholar
  47. 47.
    D. R. McGowan, P. C. Fabrication, August 1984.Google Scholar
  48. 48.
    D. W. Wang, “Advanced materials for printed circuit boards”, Mat. Res. Soc. Symp. Proc 108 p 125 (1988).CrossRefGoogle Scholar
  49. 49.
    D. J. Capo and J. E. Schoenberg, “Acetylene-terminated AT fluorinated polyimide”, SAMPE Journal, March/April 1987.Google Scholar
  50. 50.
    D. J. Capo and J. E. Schoenberg, “An acetylenic-terminated fluorinated polyimide, properties and applications”, presented at 18th International SAMPE Technical Conf., October, 1986.Google Scholar
  51. 51.
    “Thermid® FA-7001 Product Data”, National Starch and Chemical, Data Sheet 16286.Google Scholar
  52. 52.
    D. A. Shimp, J. R. Christenson and S. J. Ising, “Cyanate esters - an emerging family of versatile composite resins”, presented at 34’th International S A M PE Symp., May 8, 1989, Reno, NV.Google Scholar
  53. 53.
    G. W. Bogan, M. E. Lyssy, G. A. Monnerat and E. P. Woo, “Unique polyaromatic cyanate ester for low dielectric printed circuit boards”, SAMPE J. 24(6) pp. 19–25 (1988).Google Scholar
  54. 54.
    D. A. Jarvie, “Characterization of dicyclopentadiene based cyanate ester resin mechanical and electrical properties of unreinforced resin castings and composites”, 33’rd International SAMPE Symposium, Volume 33, March 1988, p. 1405.Google Scholar
  55. 55.
    V. A. Pankratov, S. V. Vinogradova, and V. V. Korshak, “The synthesis of polycyanates by the polycyclotrimerisation of aromatic and organoelement cyanate esters”, Russian Chem. Rev. 46(3),pp 278–295 (1977), translated from Uspekhi Khimii 46, pp 530-564 (1977).ADSCrossRefGoogle Scholar
  56. 56.
    D. A. Shimp, F. A. Hudock and S. J. Ising, “Co-reaction of epoxide and cyanate resins”, 33’rd International SAMPE Symposium, Volume 33, March 1988, p. 754.Google Scholar
  57. 57.
    D. A. Shimp, “Polycyanate esters of polyhydric phenols blended with thermoplastic polymers”, EP 0 311 341 A2 (12/4/89).Google Scholar
  58. 58.
    S. J. Ising and D. A. Shimp, “Flammability resistance of non-brominated cyanate ester resins”, presented at34’th International SAMPE Symp., May 8, 1989, Reno, NV.Google Scholar
  59. 59.
    S. J. Ising, D. A. Shimp and J. R. Christenson, “Cyanate cure behavior and the effect on physical and performance properties”, 3’rd Int’l SAMPE Electronic Conf., June 1989, Los Angeles, CA.Google Scholar
  60. 60.
    “Dow XU-71787 Product Brochure”, Dow Chemical Form No. 296-00851-589-A&L,, April 1989.Google Scholar
  61. 61.
    C. P. Wong, “High performance silicone gel as integrated-circuit-device chip Protection”, in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 19.Google Scholar
  62. 62.
    C. P. Wong, “Integrated circuit device encapsulants”, in Polymers for Electronic Applications, edited by J.H. Lai, (CRC Press, Boca Raton, FL, 1989). Chapter 3.Google Scholar
  63. 63.
    G. J. Kookootsedes, “Silicone gels for semiconductor applications”, in Polymeric Materials for Electronics Packaging and Interconnection, edited by J.H. Lupinski and R.S. Moore, (Amer. Chem. Soc., Washington, DC, 1989), Chapter 20.Google Scholar
  64. 64.
    R. A. Kirchoff, “Polymers derived from poly(arylcyclobutenes)”, U. S. Patent 4,540,763, September 10, 1985.Google Scholar
  65. 65.
    S. F. Hahn, P. H. Townsend, D. C. Burdeaux and J. A.Gilpin, “The fabrication and properties of thermoset films derived from bis-benzocyclobutene for multilayer applications”, Polym. Mater. Sci. Eng. 59 pp 190–194 (1988).Google Scholar
  66. 66.
    L-S. Tan and F. Arnold, “New high-temperature thermoset systems based on bis-benzocyclobutene”, ACS Polymer Preprints 26(2) pp 176–177 (1985).Google Scholar
  67. 67.
    P. Garrou, “Dow Chemical polymer and ceramic material developments for VLSI and beyond”, presented to IEEE Computer Packaging Workshop, January 26, 1988 Oiso, Japan.Google Scholar
  68. 68.
    T. G. Tessier, G. M. Adema and i. Turlik,“ Polymer dielectric options for thin film packaging applications”, Technical Report TR89-46, Microelectronics Center of North Carolina, October 23, 1989.Google Scholar
  69. 69.
    M. P. Zussman, “Polybutadiene-epoxy-anhydride laminating resins”, U. S. Patent 4,601,944 July 22, 1986.Google Scholar
  70. 70.
    N. Sawatari, I. Watanabe, H. Okuyama and K. Murakawa; IEEE Trans. Elec. Insul., EI-18 (2), 131 (1983).CrossRefGoogle Scholar
  71. 71.
    M. Itoh, S. Maeda, T. Heiuchi, T. Ozeki and T. Sakamoto, “Thermosetting PPO laminates for high frequency circuits”, presented at IPC Fall Meeting, Anaheim, CA, October 1988, IPC-TP-750.Google Scholar
  72. 72.
    “Ricotuff and Ricotuff L.V., Technical Bulletin”, Colorado Chemical Specialties, 1987.Google Scholar
  73. 73.
    S. J. Mumby and J. Yuan, “Dielectric properties of FR-4 laminates as a function of thickness and the electrical frequency of the measurement”, J. Electronic Materials 18(2) pp 287–291 (1989).ADSCrossRefGoogle Scholar
  74. 74.
    L. K. H. van Beek, “Dielectric behavior of heterogeneous systems”, Progress in Dielectrics 7 pp 69–113 (1967).Google Scholar
  75. 75.
    D. J. Vaughan and C. G. Herschdorfer, “The manufacture of woven glass fabric” in The Multilayer Printed Circuit Board Handbook, edited by J.A. Scarlett, (Electrochemical Publications Ltd, Ayr, Scotland, 1985), Chapter 3.Google Scholar
  76. 76.
    I. Englen, R. Hengl, G. Hinricksen, “Thermal expansion and Young’s modulus of uniaxially drawn polytetrafluoroethylene in the temperature range from 100 to 400K”, Colloid and Polymer Sci. 262 pp 780–787 (1984).CrossRefGoogle Scholar
  77. 77.
    G. C. Weedon and T. Y. Tam, Modern Plastics 63(3) pp 64,66–68 (1986).Google Scholar
  78. 78.
    R. J. Bonfield, “A high reliability soft substrate for high speed digital and microwave applications”, presented at IPC Fall Meeting, October 1987, Chicago, IPC-TP-658.Google Scholar
  79. 79.
    “RT/duroid®” product bulletin, Rogers Corporation, 1982, brochure 9341-026-MG-5.0.Google Scholar
  80. 80.
    J. R. Carroll, L. W. McGinnis, T. L. Miller and M. B. Norris, “Glass fiber reinforced fluoropolymeric circuit laminate”, US 4,886,699 December 12, 1989.Google Scholar
  81. 81.
    S. Gazit and S. C. Lockard, “ Low dielectric constant circuit materials for high speed digital systems”, presented at Printed Circuit World Convention IV, June, 1987, Tokyo, Japan, paper WCIV-33.Google Scholar
  82. 82.
    “R02500™ Preliminary Data Sheet”, Rogers Corporation, 1986, brochure 0330-067-3.0A.Google Scholar
  83. 83.
    S. Gazit and T. S. Kneeland, “Laminated circuit material”, UK Patent GB 2 162 124, June 2, 1988.Google Scholar
  84. 84.
    S. Gazit and C. A. Fleischer, “Flexible circuit laminate and method of making the Same”, US 4,634,631 January 6, 1987.Google Scholar
  85. 85.
    “T-Flex™/T-Lam™ Flexible Laminates” data sheet, Du Pont Electronics, 1989, brochure H-05339 2/89 10M. 86 D. J. Arthur, J. C. Mosko, C. S. Jackson and G. R. Traut, “Electrical substrate Material”, US 4,849,284, July 18, 1989.Google Scholar
  86. 87.
    “ R02800™ Preliminary Data Sheet”, Rogers Corporation, 1989, brochure 2296-089-5.0A.Google Scholar
  87. 88.
    D. B. Noddin, “Processing high performance multi-layer boards of fluoropolymer composite materials” EPS: Proc. Tech. Confer. 6’th Ann. Int. Elec. Pack. Confer., Wheaton, IL, Nov. 1986 pp. 318–330.Google Scholar
  88. 89.
    “Laminates and pre-pregs of expanded PTFE for high speed digital multilayers”, W. L. Gore and Assoc., GCGP1813-3/87.Google Scholar
  89. 90.
    D. D. Johnson, “Dielectric materials having low dielectric constants and methods for their manufacture”, UK Patent GB 2 171 356 B, August 23,1989.Google Scholar
  90. 91.
    J. Mosko, “The mixed dielectric approach: improving speed and density with Gore-Ply® precision dielectric prepreg”, presented at 1989 IEPS meeting, San Diego, CA.Google Scholar
  91. 92.
    W. W. Snyder, “A new low-dielectric material for PCB’s”, PC Fab, March 1990, pp. 41-42,43,48,50.Google Scholar
  92. 93.
    “Gore-Ply® Precision Dielectric Pre-pregs”, W. L. Gore & Assoc., Technical Note 3126, November 1989.Google Scholar
  93. 94.
    J. LÜsch, “Neue Perspektiven in der Multilayer-Technologie”, Elektronik 37(24) pp. 58–62 (1988).Google Scholar
  94. 95.
    A. M. Ibrahim, “Surface mount technology (SMT) substrate material requirements- a brief review”, Mat. Res. Soc. Symp. Proc. 108pp 159–168 (1988).CrossRefGoogle Scholar
  95. 96.
    L. E. Gates, Jr. and W. G. Reiman, “An alternate printed wiring board material for LCC’s D polyimide-quartz fabric”, Proc. 2’nd Ann. Int. Elec. Pack. Cong. pp. 605-612 (1982).Google Scholar
  96. 97.
    A. M. Ibrahim, “Acetylene-terminated polyimide composites for advanced electronic packaging applications”, Mat. Res. Soc. Symp. Proc. 154 pp 3–10 (1989)CrossRefGoogle Scholar
  97. 98.
    “N-8000 Laminate and Prepreg for High Speed Circuitry”, NELCO product bulletin, 1989.Google Scholar
  98. 99.
    “Kevlar® Controlled Expansion Substrates for Leadless Chip Carriers”, E. I. Du Pont bulletin E-69540, 1984.Google Scholar

Copyright information

© Van Nostrand Reinhold 1991

Authors and Affiliations

  • Melvin P. Zussman

There are no affiliations available

Personalised recommendations