Proteases in inflammation

  • T. Kudo
  • E.-Q. Wei
  • R. Inoki


It is well known that from 1860 to 1900 some investigators had already noted the existence of proteases and peptone in pus. Leukotaxin, which induces increased permeability in blood vessels and the taxis of neutrophils, was separated from the inflammatory exudate by Menkin (1940, 1950). He showed that leukotaxin was a polypeptide and suggested a possible role of proteases in inflammation.


Guanylate Cyclase Dental Pulp Pulp Tissue Soluble Guanylate Cyclase Pulp Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, K. P. and Heath, E. C. (1985) The relationship between rat major acute phase protein and the kininogens. J. Biol. Chem., 260, 12065–12071.Google Scholar
  2. Asano, T. and Hidaka, H. (1977) Purification of guanylate cyclase from human platelet and effect of arachidonic acid peroxide. Biochem. Biophys. Res. Commun., 78, 910–918.Google Scholar
  3. Barrett, A. J. (1977) Cathepsin D and other carboxylproteinases, in Proteinases in Mammalian Cells and Tissues (ed. A. J. Barrett ), North-Holland, Amsterdam, pp. 209–248.Google Scholar
  4. Barrett, A. J. and Kirschke, H. (1981) Cathepsin B, cathepsin H, and cathepsin L. Meth. Enzymol., 80, 535–561.Google Scholar
  5. Barrett, A. J., Rawlings, N. D., Davies, M. E., Machleidt, W., Salvesen, G. and Turk, V. (1986) Cysteine proteinase inhibitors of the cystatin superfamily, in Proteinase Inhibitors (eds A. J. Barrett and G. Salvesen ), Elsevier, Amsterdam, pp. 515–569.Google Scholar
  6. Beer, D. G., Hjelle, J. J., Petersen, D. R. and Malkinson, A. M. (1982) Calcium-activated proteolytic activity in rat liver mitochondria. Biochem. Biophys. Res. Commun., 109, 1276–1283.Google Scholar
  7. Chan, S. J., Segundo, B. S., McCormick, M. B. and Steiner, D. F. (1986) Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B. Proc. Natl Acad. Sci. USA, 83, 7721–7725.Google Scholar
  8. Chaudhury, T. K. and Jacobson, E. D. (1978) Prostaglandin cytoprotection of gastric mucosa. Gastroenterology, 74, 59–63.Google Scholar
  9. Corbin, J. D. and Lincoln, T. M. (1978) Comparison of cAMP- and cGMPdependent protein kinases, in Advances in Cyclic Nucleotide Research Vol. 9 (eds W. J. George and L. J. Ignarro ), Raven Press, New York, pp. 159–170.Google Scholar
  10. De Duve, C., Pressman, B. C., Gianetto, R. J., Wattaux, R. and Appleman, F. (1955) Tissue fractionation studies 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J., 60, 604–617.Google Scholar
  11. Deguchi, T. (1977) Activation of guanylate cyclase in cerebral cortex of rat by hydroxylamine. J. Biol. Chem., 252, 596–601.Google Scholar
  12. Deguchi, T., Saito, M. and Kono, M. (1978) Blockade by Nmethylhydroxylamine of activation of guanylate cyclase and elevations of guanosine 3’,5,-monophosphate levels in nervous tissues. Biochim. Biophys. Acta, 544, 8–19.Google Scholar
  13. Deguchi, T. and Yoshioka, M. (1982) L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. J. Biol. Chem., 257, 10147–10151.Google Scholar
  14. DeMartino, G. N. and Goldberg, A. L. (1979) Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J. Biol. Chem., 254, 3712–3715.Google Scholar
  15. DeMartino, G. N. (1981) Calcium-dependent proteolytic activity in rat liver: Identification of two proteases with different calcium requirements. Arch. Biochem. Biophys., 211, 253–257.Google Scholar
  16. DeMartino, G. N. (1982) Cytoplasmic proteases of rat liver parenchymal cells. Biochem. Biophys. Res. Commun., 108, 1325–1330.Google Scholar
  17. Desautels, M. and Goldberg, A. L. (1982a) Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. Natl Acad. Sci. USA, 79, 1869–1873.Google Scholar
  18. Desautels, M. and Goldberg, A. L. (1982b) Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J. Biol. Chem., 257, 11673–11679.Google Scholar
  19. Desiderio, D. M., Yamada, S., Tanzer, F. S., Horton, J. and Trimble, J. (1981) High-performance liquid chromatographic and field desorption mass spectrometric measurement of picomole amounts of endogenous neuropeptides in biologic tissue. J. Chromatogr., 217, 437–452.Google Scholar
  20. Dingle, J. T. (1961) Studies on the mode of action of excess of vitamin A. 3. Release of a bound protease by the action of vitamin A. Biochem. J., 79, 509–512.Google Scholar
  21. Douglass, J., Civelli, O. and Herbert, E. (1984) Polyprotein gene expression: Generation of diversity of neuroendocrine peptides. Ann. Rev. Biochem., 53, 665–715.Google Scholar
  22. Evangelista, R., Ray, P. and Lewis, R. V. (1982) A ‘trypsin-like’ enzyme in adrenal chromaffin granules: A proenkephalin processing enzyme. Biochem. Biophys. Res. Commun., 106, 895–902.Google Scholar
  23. Ferguson, W. W., Edmonds, A. W., Starling, J. R. and Wangensteen, S. L. (1973) Protective effect of prostraglandin E1(PGE1) on lysosomal enzyme release in serotonin-induced gastric ulceration. Ann. Surg., 177, 648–654.Google Scholar
  24. Furuto-Kato, S., Matsumoto, A., Kitamura, N. and Nakanishi, S. (1985) Primary structures of the mRNAs encoding the rat precursors for bradykinin and Tkinin. J. Biol. Chem., 260, 12054–12059.Google Scholar
  25. Gates, R. E. and King, L. E. (1983) Proteolysis of the epidermal growth factor receptor by endogenous calcium-activated neutral protease from rat liver. Biochem. Biophys. Res. Commun., 113, 255–261.Google Scholar
  26. Glass, D. B., Frey, W., III, Carr, D. W. and Goldberg, N. D. (1977) Stimulation of human platelet guanylate cyclase by fatty acids. J. Biol. Chem., 252, 1279–1285.Google Scholar
  27. Goldberg, A. L. (1987) The ATP-dependent pathway for protein degradation in mitochondria, in Lysosomes: Their Role in Protein Breakdown (eds H. Glauman and F. J. Ballard ), Academic Press, London, pp. 715–722.Google Scholar
  28. Guenet, L., Leray, G., Codet, J.-P., Le Treut, A. and Le Gall, J.-Y. (1982) Evidence for intrinsic proteolytic activity in rat liver plasma membranes. Biochem. Biophys. Res. Commun., 108, 486 494.Google Scholar
  29. Hanada, K., Tamai, M., Morimoto, S., Adachi, T., Ohmura, S., Sawada, J. and Tanaka, I. (1978a) Inhibitory activities of E-64 derivatives on papain. Agr. Biol. Chem., 42, 537–541.Google Scholar
  30. Hanada, K., Tamai, M., Ohmura, S., Sawada, J., Seki, T. and Tanaka, I. (1978b) Structure and synthesis of E-64, a new thiol protease inhibitor. Agr. Biol. Chem., 42, 529–536.Google Scholar
  31. Hanada, K., Tamai, I., Yamagishi, M., Ohmura, S., Sawada, J. and Tanaka, I. (1978c) Isolation and characterization of E-64, a new thiol protease inhibitor. Agr. Biol. Chem., 42, 523–528.Google Scholar
  32. Hayashi, H. (1975) The intracellular neutral SH-dependent protease associated with inflammatory reactions. Int. Rev. Cytol., 40, 101–151.Google Scholar
  33. Heinrich, P. C. (1982) Proteolytic processing of polypeptides during the biosynthesis of subcellular structures. Rev. Physiol. Biochem. Pharmacol., 93, 115–187.Google Scholar
  34. Hidaka, H. and Asano, T. (1977) Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides. Proc. Natl Acad. Sci. USA, 74, 3657–3661.Google Scholar
  35. Higashiyama, S., Ishiguro, H., Ohkubo, I., Fujimoto, S., Matsuda, T. and Sasaki, M. (1986a) Kinin release from kininogens by calpains. Life Sci., 39, 1639–1644.Google Scholar
  36. Higashiyama, S., Ohkubo, I., Ishiguro, H., Kunimatsu, M., Sawaki, K. and Sasaki, M. (1986b) Human high molecular weight kininogen as a thiol proteinase inhibitor: Presence of the entire inhibition capacity in the native form of heavy chain. Biochemistry, 25, 1669–1675.Google Scholar
  37. Hook, V. Y. H., Eiden, L. E. and Brownstein, M. J. (. 1982 ) A carboxypeptidase processing enzyme for enkephalin precursors. Nature, 295, 341–342.Google Scholar
  38. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A. and Morris, H. R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 258, 577–579.Google Scholar
  39. Hughes, J. (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res., 88, 295–308.Google Scholar
  40. Inoki, R., Toyoda, T. and Yamamoto, I. (1973) Elaboration of a bradykinin-like substance in dog’s canine pulp during electrical stimulation and its inhibition by narcotic and nonnarcotic analgesics. Naunyn-Schmiedeberg’s Arch. Pharmacol., 279, 387–398.Google Scholar
  41. Inoki, R., Hayashi, T., Kudo, T., Matsumoto, K., Oka, M. and Kotani, Y. (1977) Effects of morphine and acetylsalicylic acid on kinin-forming enzyme in rat paw. Arch. Int. Pharmacodyn., 228, 126–135.Google Scholar
  42. Inoki, R., Hayashi, T., Kudo, T. and Matsumoto, K. (1978) Effects of aspirin and morphine on the release of a bradykinin-like substance into the subcutaneous perfusate of the rat paw. Pain, 5, 53–63.Google Scholar
  43. Inoki, R., Matsumoto, K., Kudo, T., Kotani, Y. and Oka, M. (1979) Bradykinin as an algesic (pain producing) substance in the pulp. Naunyn-Schmiedeberg’s Arch. Pharmacol., 306, 29–36.Google Scholar
  44. Inoki, R. and Kudo, T. (1986) Enkephalins and bradykinin in dental pulp. Trends Pharmacol. Sci., 7, 275–277.Google Scholar
  45. Inoki, R., Kudo, T. and Wei, E.-Q. (1987) Significance of the production of bradykinin in inflamed dental pulp, in Microcirculation: An Update, Vol. 2 (eds M. Tsuchiya, M. Asano, Y. Mishima and M. Oda ), Excerpta Medica, Amsterdam, pp. 111–114.Google Scholar
  46. Ishida, H. and Hayashi, H. (1980) Intracellular neutral proteases associated with inflammatory reactions. Protein, Nucl. Acid and Enzyme, 25, 181–191.Google Scholar
  47. Ishidoh, K., Towatari, T., Imajoh, S., Kawasaki, H., Kominami, E., Katsunuma, N. and Suzuki, K. (1987a) Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Lett., 223, 69–73.Google Scholar
  48. Ishidoh, K., Imajoh, S., Emori, Y., Ohno, S., Kawasaki, H., Minami, Y., Kominami, E., Katsunuma, N. and Suzuki, K. (1987b) Molecular cloning and sequencing of cDNA for rat cathepsin H: Homology in propeptide regions of cysteine proteinase. FEBS Lett., 226, 33–37.Google Scholar
  49. Katsunuma, N. and Kominami, E. (1983) Structures and functions of lysosomal thiol proteinases and their endogenous inhibitor, in Current Topics in Cellular Regulation Vol. 22 (eds B. L. Horecker and E. R. Stadtman ), Academic Press, New York, pp. 71–101.Google Scholar
  50. Katsunuma, N. (1987) Lysosomal cysteine proteinases and diseases. Exp. Med., 5, 926–930.Google Scholar
  51. Kirschke, H. and Barrett, A. J. (1987) Chemistry of lysosomal proteases, in Lysosomes: Their Role in Protein Breakdown (eds H. Glaumann and F. J. Ballard ), Academic Press, London, pp. 193–238.Google Scholar
  52. Kitamura, N., Takagaki, Y., Furuto, S., Tanaka, T., Nawa, H. and Nakanishi, S. (1983) A single gene for bovine high molecular weight and low molecular weight kininogens. Nature, 305, 545–549.Google Scholar
  53. Knight, C. G. (1980) Human cathepsin B. Application of the substrate Nbenzyloxycarbonyl-L-arginyl-L-arginine-2-naphthylamide to a study of the inhibition by leupeptin. Biochem. J., 189, 447–453.Google Scholar
  54. Kudo, T., Kawagoe, M., Hayashi, T., Takezawa, J. and Inoki, R. (1975) Inhibitory effect of Apernyl on production of bradykinin-like substance in pulp. J. Dent. Res., 54, 1082–1086.Google Scholar
  55. Kudo, T., Yonehara, N., Hayashi, T., Inoki, R., Nishimoto, T. and Akai, M. (1981) Opioid peptide in the dog canine pulp? in Advances in Endogenous and Exogenous Opioids (eds H. Takagi and E. J. Simon ), Kodansha/Elsevier, Tokyo, pp. 173–175.Google Scholar
  56. Kudo, T., Nishimoto, T., Inoki, R., Akai, N. and Yonehara, N. (1982) Metenkephalin positive cells in the dog canine pulp. Acta Histochem. Cytochem., 15, 449.Google Scholar
  57. Kudo, T., Chang, H.-L., Maeda, S., Uchida, Y., Nakamae, J. and Inoki, R. (1983a) Changes of the met-enkephalin-like peptide content induced by noxious stimuli in the rat incisor pulp. Life Sci., 33, (Suppl. 1), 677–680.Google Scholar
  58. Kudo, T., Maeda, S., Nakamae, J., Chang, H.-L., Uchida, Y. and Inoki, R. (1983b) A possible relationship between processing from precursor proteins to opioid peptides and noxious stimulation in the rat incisor pulp. Life Sci., 33, (Suppl. 1), 681–684Google Scholar
  59. Kudo, T., Maeda, S. and Inoki, R. (1983c) Opioid peptides in the tooth pulp. J. Osaka Univ. Dent. Soc., 28, 167–182.Google Scholar
  60. Kudo, T., Kuroi, M. and Inoki, R. (1986a) In vitro production and release of opioid peptides in the tooth pulp induced by bradykinin. Neuropeptides, 7, 391–397.Google Scholar
  61. Kudo, T., Chang, H.-L., Kuroi, M., Wakisaka, S., Akai, M. and Inoki, R. (1986b) Influence of bradykinin and substance P on the met-enkephalin-like peptide content in the rat incisor pulp. Neuropeptides, 7, 399–405.Google Scholar
  62. Kudo, T., Wei, E.-Q. and Inoki, R. (1987) Effect of bradykinin on BANAdegrading enzyme activities in the rat incisor pulp, in Abstracts of International Narcotics Research Conference, Adelaide, p. 138.Google Scholar
  63. Kudo, T., Wei, E.-Q. and Inoki, R. (1988a) Bradykinin production by noxious stimuli and its inhibition in dental pulp. Jpn. J. Oral Biol., 30, (Suppl.), 40.Google Scholar
  64. Kudo, T., Wei, E.-Q. and Inoki, R. (1988b) Activation of calcium ion-dependent proteinases by bradykinin in dental pulp of the rat, in Kinins V Part B, (eds K. Abe, H. Moriya and S. Fujii ), Plenum, New York pp. 627–31.Google Scholar
  65. Kudo, T., Wei, E.-Q., Zhu, B.-F. and Inoki, R. (1989) Involvement in lysosomal enkephalin production in dental pulp of the rat. Dentistry in Japan, 26, 41–44.Google Scholar
  66. Langner, J., Kirschke, H., Bohley, P., Wiederanders, B. and Korant, B. D. (1982) The ribosomal serine proteinase, cathepsin R. Occurrence in rat-liver ribosomes in a cryptic form. Eur. J. Biochem., 125, 21–26.Google Scholar
  67. Lewis, R. V., Stern, A. S., Kimura, S., Rossier, J., Stein, S. and Udenfriend, S. (1980) An about 50,000-Dalton protein in adrenal medulla: A common precursor of [met]- and [leu]-enkephalin. Science, 208, 1459–1461.Google Scholar
  68. Lucy, J. A. (1969) Lysosomal membranes, in Frontiers of Biology, 14B, Lysosomes in Biology and Pathology, Vol. 2 (eds J. T. Dingle and H. B. Fell ), North-Holland, Amsterdam, pp. 313–341.Google Scholar
  69. Mains, R. E., Lipper, B. A., Glembotski, C. C. and Dores, R. M. (1983) Strategies for the biosynthesis of bioactive peptides. Trends Neurosci., 6, 229–235.Google Scholar
  70. Menkin, V. (1940) Dynamics in Inflammation. Macmillan, London.Google Scholar
  71. Menkin, V. (1950) Newer Concept of Inflammation. Thomas, Springfield.Google Scholar
  72. Miller, T. A. and Jacobson, E. D. (1979) Gastrointestinal cytoprotection by prostaglandins. Gut, 20, 75–87.Google Scholar
  73. Mizuno, K. and Matsuo, H. (1987) Neuropeptide biosynthesis and proteases. Exp. Med., 5, 920–925.Google Scholar
  74. Mori, M., Miura, S., Tatibana, M. and Cohen, P. P. (1980) Characterization of a protease apparently involved in processing of preornithine transcarbamylase of rat liver. Proc. Natl Acad. Sci. USA, 77, 7044–7048.Google Scholar
  75. Muller-Esterl, W., Rauth, H., Lottspeich, F., Kellermann, J. and Henschen, A. (1985) Limited proteolysis of human low-molecular-mass kininogen by tissue kallikrein. Isolation and characterization of the heavy and the light chains. Eur. J. Biochem., 149, 15–22.Google Scholar
  76. Nakane, M. and Deguchi, T. (1986) cGMP as an intracellular mediator. Protein, Nucl. Acid and Enzyme, 31, 1715–1727.Google Scholar
  77. Nawa, H., Kitamura, N., Hirose, T., Asai, M., Inayama, S. and Nakanishi, S. (1983) Primary structures of bovine liver low molecular weight kininogen precursors and their two mRNA. Proc. Natl Acad. Sci. USA, 80, 90–94.Google Scholar
  78. Oda, K., Misumi, Y. and Ikehara, Y. (1983) Disparate effects of monesin and colchicine on intracellular processing of secretory proteins in cultured rat hepatocytes. Eur. J. Biochem., 135, 209–216.Google Scholar
  79. Ohkubo, I., Kurachi, K., Takasawa, T., Shiokawa, H. and Sasaki, M. (1984) Isolation of a human cDNA for a2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry, 23, 5691–5697.Google Scholar
  80. Okamoto, H. and Greenbaum, L. M. (1983) Isolation and structure of T-kinin. Biochem. Biophys. Res. Commun., 112, 701–708.Google Scholar
  81. Rapoport, S., Dubiel, W. and Muller, M. (1982) Characteristics of an ATP-dependent proteolytic system of rat liver mitochondria. FEBS Lett., 147, 93–96.Google Scholar
  82. Rapoport, S., Dubiel, W. and Muller, M. (1983) Calcium exerts an indirect effect on ATP-dependent proteolysis of rat liver mitochondria. FEES Lett., 160, 134–136.Google Scholar
  83. Regoli, D. (1983) Pharmacology of bradykinin and related kinins, in Kinins III (eds H. Fritz, N. Back, G. Dietze and G. L. Haberland ), Plenum Press, New York, pp. 569–584.Google Scholar
  84. Robert, A., Nezamis, J. E., Lancaster, C. and Hanchar, A. J. (1979) Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCI, NaOH, hypertonie NaCI and thermal injury. Gastroenterology, 77, 433–443.Google Scholar
  85. Rogers, G., Gruenebaum, J. and Boime, I. (1982) Reconstitution of a tandem co-and post-translational processing pathway with rat liver subcellular fractions. J. Biol. Chem., 257, 4179–4186.Google Scholar
  86. Rose, I. A., Warms, J. V. B., and Hershko, A. (1979) A high molecular weight protease in liver cytosol. J. Biol. Chem., 254, 8135–8138.Google Scholar
  87. Roth, M. (1963) Fluorometric assay of trypsin. Clin. Chim. Acta, 8, 574–578.Google Scholar
  88. Sakamoto, W., Satoh, F., Gotoh, K. and Uehara, S. (1987) Ile-Ser-bradykinin (Tkinin) and Met-Ile-Ser-bradykinin (Met-T-kinin) are released from Tkininogen by an acid proteinase of granulomatous tissues in rats. FEBS Lett., 219, 437–440.Google Scholar
  89. Schultzberg, M., Hökfelt, T., Lundberg, J. M., Terenius, L., Elfvin, L.-G. and Elde, R. (1978) Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and adrenal medullary gland cells. Acta Physiol. Scand., 103, 475–477.Google Scholar
  90. Schwartz, W. N. and Barrett, A. J. (1980) Human cathepsin H. Biochem. J., 191, 487–497.Google Scholar
  91. Scott, C. F., Silver, L. D., Purdon, A. D. and Colman, R. W. (1985) Cleavage of human high molecular weight kininogen by factor XIa in vitro. J. Biol. Chem., 260, 10856–10863.Google Scholar
  92. Slater, T. F. (1974) Lysosomes (with a short note on peroxisomes) in Companion to Biochemistry (eds A. T. Bull, J. R. Lagnado, J. O. Thomas and K. F. Tipton), Longman, London, pp. 511–551.Google Scholar
  93. Steiner, D. F., Kemmler, W., Tager, H. S. and Peterson, J. D. (1974) Proteolytic processing in the biosynthesis of insulin and other proteins. Fed. Proc., 33, 2105–2115.Google Scholar
  94. Sueyoshi, T., Enjyoji, K., Shimada, T., Kato, H., Iwanaga, S., Bando, Y., Kominami, E. and Katunuma, N. (1985) A new function of kininogens as thiol-proteinase inhibitors: Inhibition of papain and cathepsin B, H, and L by bovine, rat and human plasma kininogens. FEBS Lett., 182, 193–195.Google Scholar
  95. Takagaki, Y., Kitamura, N. and Nakanishi, S. (1985) Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. J. Biol. Chem., 260, 8601–8609.Google Scholar
  96. Takio, K., Towatari, T., Katsunuma, N. and Titani, K. (1980) Primary structure study of rat liver cathepsin B. A striking resemblance to papain. Biochem. Biophys. Res. Commun., 97, 340–346.Google Scholar
  97. Takio, K., Towatari, T., Katsunuma, N., Teller, D. C. and Titani, K. (1983) Homology of amino acid sequences of rat liver cathepsin B and H with that of papain. Proc. Natl Acad. Sci. USA, 80, 3666–3670.Google Scholar
  98. Tamura, Y., Hirado, M., Okamura, K., Minato, Y. and Fujii, S. (1977) Synthetic inhibitors of trypsin, plasmain, kallikrein, thrombin, Clr and Cl esterase. Biochim. Biophys. Acta., 484, 417–422.Google Scholar
  99. Tanzer, F. S., Desiderio, D. M. and Yamada, S. (1981) HPLC isolation and FD-MS quantification of picomole amounts of met-enkephalin in canine tooth pulp, in Peptides: Synthesis-structure-function (eds D. H. Rich and E. Gross ), Pierce, Rockford, pp. 761–764.Google Scholar
  100. Taylor, S. L. and Tappel, AL.L. (1974) Identification and separation of lysosomal carboxypeptidases. Biochim. Biophys. Acta., 341, 99–111.Google Scholar
  101. Tsurugi, K. and Ogata, K. (1980) Presence of a thiol protease in regenerating rat-liver nuclei: Partial purification and some properties. Eur. J. Biochem., 109, 9–15.Google Scholar
  102. Viveros, O. H., Dilibarto, E. J., Hazum, E. Jr. and Chang, K.-J. (1979) Opiate-like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines. Mol. Pharmacol., 16, 1101–1108.Google Scholar
  103. Wiggins, R. C. (1983) Kinin release from high molecular weight kininogen by the action of Hageman factor in the absence of kallikrein. J. Biol. Chem., 258, 8963–8970.Google Scholar
  104. Yonehara, N., Imai, Y. and Inoki, R. (1988) Effects of opioids on the heat stimulus-evoked substance P release and thermal edema in the rat hind paw. Eur. J. Pharmacol., 151, 381–387.Google Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • T. Kudo
  • E.-Q. Wei
  • R. Inoki

There are no affiliations available

Personalised recommendations