Advertisement

Odontoblasts: developmental aspects

  • J. V. Ruch

Abstract

Histological, cytological and functional organization determine the identity of odontoblasts. These cells are most often aligned in a single layer at the periphery of the pulp. Fully differentiated odontoblasts are tall, columnar, postmitotic cells with a polarized distribution of their cytoplasmic organelles. These cells may be divided into the cell body and the odontoblastic cell process, which probably extends to the dentine-enamel junction. Functional odontoblasts synthesize and secrete collagen type I (and type I trimer), collagen type V and non-collagenous components: proteoglycans, glycosaminoglycans, γ-carboxyglutamatecontaining proteins and phosphoproteins. Two levels of secretion probably exist: most components are exocytosed into the predentine, whilst other components (some phosphoproteins, osteocalcin) appear to be released at the mineralization front. Odontoblasts are connected by junctional complexes; however, these do not completely seal the interodontoblastic space.

Keywords

Neural Crest Terminal Differentiation Tooth Germ Developmental Aspect Enamel Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, N. and Ruch, J. V. (1987) Comparison of growth and cell proliferation kinetics during mouse molar odontogenesis in vivo and in vitro. Cell Tissue Kinetics, 20, 319–329.Google Scholar
  2. Akiyama, S. K., Yamada, S. and Yamada, K. M. (1986) Characterization of a 140 Kd avian cell surface antigen as a fibronectin-binding molecule. J. Cell. Biol., 102, 442–448.CrossRefGoogle Scholar
  3. Anders, G. (1949) Untersuchungen an Chimären von Triton und Bominator. Genetics, 24, 387–534.Google Scholar
  4. Baume, L. J. (1980) The biology of pulp and dentine, in Monograph in Oral Sciences (ed. M. Myers ), Karger, Basel, p. 246.Google Scholar
  5. Becker, J., Schuppan, D., Benzian, H., Bals, T., Hahn, E. G., Cantaluppi, C. and Reichart, P. (1986) Immunohistochemical distribution of collagen types IV, V and VI and of pro-collagens types I and III in human alveolar bone and dentine. J. Histochem. Cytochem., 34, 1417–1429.CrossRefGoogle Scholar
  6. Ben-zé ev, A. (1986) The relationship between cytoplasmic organization, gene expression and morphogenesis. TIBS, 11, 478–481.Google Scholar
  7. Bernfield, M. R. and Banerjee, S. D. (1978) The basal lamina in epithelialmesenchymal morphogenetic interactions, in Biology and chemistry of basement membrane (ed. N. A. Kefalidis ), Academic Press, New York, pp. 137–152.Google Scholar
  8. Bronckers, A. L. J. J., Gay, S., Dimuzio, M. T. and Butler, W. T. (1985) Immunolocalization of -y-carboxyglutamic acid containing proteins in developing molar tooth germs of the rat. Coll. Rel. Res., 5, 17–22.Google Scholar
  9. Bronckers, A. L. J. J., Gay, S., Lyaruu, D. M., Gay, R. and Miller, J. E. (1986) Localization of type V collagen with monoclonal antibodies in developing dental and peridental tissues of the rat and hamster. Collagen Rel. Res., 6, 1–13.Google Scholar
  10. Butler, W. T. (ed.) (1985) The chemistry and biology of mineralized tissues. Ebsco Media, Birmingham, AL, p. 436.Google Scholar
  11. Butler, W. T., Sato, S., Rahemtulla, F. et al. (1985) Glycoproteins of bone and dentin, in The chemistry and biology of mineralized tissues, (ed. W. T. Butler ), Ebsco Media, Birmingham, AL, pp. 107–143.Google Scholar
  12. Cam, Y., Meyer, J. M., Staubli, A. and Ruch, J. V. (1986/87) Epithelialmesenchymal interactions: effects of a dental biomatrix on odontoblasts. Arch. Anat. Microsc. Morph. Exp., 75, 75–89.Google Scholar
  13. Cassin, C. and Capuron, A. (1979) Buccal organogenesis in Pleurodelès waltlii michah: studies by intrablastocelic transplantation and in vitro culture, in Tooth morphogenesis and differentiation (ed. J. V. Ruch) Editions SNPMD, Paris, pp. 37–49.Google Scholar
  14. Chiang, T. M. and Kang, A. H. (1982) Isolation and purification of a1(I) receptor from human platelet membrane. J. Biol. Chem., 257, 7581–7586.Google Scholar
  15. Chibon, P. (1966) Analyse expérimentale de la régionalisation et des capacités morphogénétiques de la crête neurale chez l’amphibien urodèle. Pleurodelès maltlii michah. Mein. Soc. Zool. (France), 36, 1–122.Google Scholar
  16. Cournil, I., Leblond, C. P., Pomponio, J. et al. (1979) Immunohistochemical localization of procollagens: I. Light microscopic distribution of procollagen I, III and IV antigenicity in the rat incisor tooth by the indirect peroxydaseantiperoxydase method. Histochèm. Cytochem., 27, 1059–1069.CrossRefGoogle Scholar
  17. Geiger, B. (1983) Membrane—cytoskeleton interaction. Biochim. Biophys. Acta, 773, 305–341.Google Scholar
  18. Gerber, R., Karcher-Djuricic, V. and Ruch, J. V. (1974) Matériel présomptif odontogène et topographie de l’épithélium dentaire dans la mâchoire inférieure de l’embryon de souris. J. Biol. Buccale, 2, 249–258.Google Scholar
  19. Gorter de Vries, I., Quartier, E., Boute, P. et al. (1987) Immunocytochemical localization of osteocalcin in developing rat teeth. J. Dent. Res., 66, 784–790.CrossRefGoogle Scholar
  20. Gospodarowicz, D., Vlodaysky, I., Savion, N. (1980) The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct., 13, 339–372.CrossRefGoogle Scholar
  21. Hay, E. D. (1982) Interaction of embryonic cell surface and cytoskeleton with extracellular matrix. Am. J. Anat., 65, 1–12.CrossRefGoogle Scholar
  22. Holtzer, H., Biehl, B. A. and Holtzer, S. (1985) Induction dependent and lineage dependent models for cell diversification are mutually exclusive, in Advances in Neuroblastoma Research. Aran R. Liss, New York, pp. 2–11.Google Scholar
  23. Horwitz, A., Duggan, K., Buck, C. et al. (1986) Interaction of plasma membrane fibronectin receptor with talin: a transmembrane linkage. Nature, 320, 531–553.CrossRefGoogle Scholar
  24. Huggins, C. R., McCarrol, M. D. and Dahlberg, A. A. (1934) Transplantation of tooth germ elements and the experimental heterotopic formation of dentin and enamel. J. Exp. Med., 60, 199–210.CrossRefGoogle Scholar
  25. Hughes, R. C., Butters, I. D. and Aplin, J. D. (1981) Cell surface molecules involved in fibronectin mediated adhesion: a study using specific antisera. Eur. J. Cell Biol., 26, 198–207.Google Scholar
  26. Hynes, R. O. (1981) Fibronectin and its relation to cellular structure and behavior, in Cell biology of extracellular matrix (ed. E. D. Hay ), Plenum Press, New York, pp. 295–315.CrossRefGoogle Scholar
  27. Jacobson, B. S. (1983) Interaction of the plasma membrane with the cytoskeleton: an overview. Tissue Cell, 15, 829–852.CrossRefGoogle Scholar
  28. Jalkanen, M., Thesleff, I., Bernfield, M. et al. (1987) Changes in the distribution of tenascin and a cell surface proteoglycan during tooth development. Third International Symposium on Tooth Morphogenesis and Differentiation, Aland, 11 June.Google Scholar
  29. Johnston, M. C. and Hazelton, R. D. (1972) Embryonic origins of facial structures related to sensory and motor functions, in Third Symposium on Oral Sensation and Perception (ed. J. F. Bosma ), Thomas Springfield, IL, pp. 76–98.Google Scholar
  30. Johnston, M. C. and Listgarten, M. (1972) Observation of the migration, interactions and early differentiation of orofacial tissues, in Developmental aspects of oral biology (eds H. C. Slavkin and L. A. Bavetta ), Academic Press, New York, pp. 35–49.Google Scholar
  31. Karcher-Djuricic, V., Osman, M., Meyer, J. M. et al. (1978) Basement membrane reconstitution and cytodifferentiation of odóntoblasts in isochronal and heterochronal reassociations of enamel organs and pulps. J. Biol. Buccale, 6, 257–265.Google Scholar
  32. Kleinman, H. K., Klebe, R. J., Martin, G. R. (1981) Role of collagenous matrix in the adhesion and growth of cells. J. Cell Biol., 8, 473–485.CrossRefGoogle Scholar
  33. Koch, W. E. (1967) In vitro differentiation of tooth rudiments of embryonic mice: I. Transfilter interaction of embryonic incisor tissue. J. Exp. Zool., 165 155–170.CrossRefGoogle Scholar
  34. Kogaya, Y. and Furuhashi, K. (1987) Ultrastructural distribution of sulfated glycosaminoglycans in epithelial-mesenchymal interface of developing rat tooth germs. J. Histochem. Cytochem., 35, 585–593.CrossRefGoogle Scholar
  35. Kollar, E. J. (1972) The development of the integument: spatial, temporal and phylogenetic events. Am. Zool., 12, 125–135.Google Scholar
  36. Kollar, E. J. (1983) Epithelial-mesenchymal interaction in the mammalian integument: tooth development as a model for instructive induction, in Epithelial-mesenchymal interaction in development (eds R. M. Sawyer and J. F. Falcon ), Praeger, New York, pp. 27–56.Google Scholar
  37. Kollar, E. J. and Baird, G. (1969) The influence of the dental papilla in the development of tooth shape in embryonic mouse tooth germs. J. Embryo!. Exp. Morpho!., 21, 131–142.Google Scholar
  38. Kubler, D., Lesot, H. and Ruch, J. V. (1988) Temporo-spatial distribution of matrix and microfilament components during odontoblast and ameloblast differentiation. Roux Arch. Dev. Biol., 197, 212–220.CrossRefGoogle Scholar
  39. Kurkinen, M., Taylor, A., Carrels, J. J. and Hogan, B. L. M. (1982) Cell surface associated proteins which bind native type IV collagen or gelatin. J. Biol. Chem., 259, 5915–5922.Google Scholar
  40. Lau, E. C. and Ruch, J. V. (1983) Glycosaminoglycans in embryonic mouse teeth and the dissociated dental constituents. Differentiation, 23, 234–242.CrossRefGoogle Scholar
  41. Lau, E. C., Boukari, A., Arechaga, J. et al. (1983) 35S-Autoradiography study of sulfated GAG accumulation and turnover in embryonic mouse tooth germs. J. Craniofacial Genet. Develop. Biol., 3, 117–131.Google Scholar
  42. Le Douarin, N. M. (1982) The neural crest. Cambridge University Press, Cambridge, p. 259.Google Scholar
  43. Lesot, H. (1981) Collagen type I trimer synthesis by cultured embryonic mouse molars. Eur. J. Biochem., 116, 541–546.CrossRefGoogle Scholar
  44. Lesot, H. and Ruch, J. V. (1979) Analyse des types de collagènes synthétisés par l’ébauche dentaire et ses constituants dissociés chez l’embryon de souris. Biol. Cell, 34, 23–38.Google Scholar
  45. Lesot, H., Karcher-Djuricic, V., Osman, M. and Ruch, J. V. (1978) Action of 5bromodeoxyuridine on tooth germs in vitro: II. Effects on collagen synthesis. J. Biol. Bucçale, 6, 281–291.Google Scholar
  46. Lesot, H., Osman, M. and Ruch, J. V. (1981) Immunofluorescent localization of collagens, fibronectin and laminin during terminal differentiation of odontoblasts. Dev. Biol., 82, 371–381.CrossRefGoogle Scholar
  47. Lesot, H., Meyer, J. M., Ruch, J. V. et al. (1982) Immunofluorescent localization of vimentin, prekeratin and actin, during odontoblast and ameloblast differentiation. Differentiation, 21, 133–137.CrossRefGoogle Scholar
  48. Lesot, H., Kuhl, U. and von der Mark, K. (1983) Isolation of a laminin-binding protein from muscle cell membranes. EMBO J., 2, 861–865.Google Scholar
  49. Lesot, H., Karcher-Djuricic, V., Meyer, J. M. and Ruch, J. V. (1985) Dental cell interaction with extracellular matrix constituents: type I collagen and fibronectin. Differentiation, 29, 171–181.CrossRefGoogle Scholar
  50. Lesot, H., Karcher-Djuricic, V. and Ruch, J. V. (1988) Membrane—cytoskeleton interactions: inhibition of odontoblast differentiation by a monoclonal antibody directed against a membrane protein. Differentiation 37, 62–72.CrossRefGoogle Scholar
  51. Linde, A. (1984) Dentin and dentinogenesis, vol. IL Non collagenous proteins and protéoglycans in dentinogenesis. CRC Press, Boca Raton, FL, pp. 55–92.Google Scholar
  52. Lumsden, A. G. S. (1985) Tooth morphogenesis: contributions of the cranial neural crest in mammals, in Tooth morphogenesis and differentiation. (eds A. B. Belcourt and J. V. Ruch ), Colloque INSERM, Paris, vol. 125, pp. 29–40.Google Scholar
  53. MacDougall, M., Zeichner-David, M., Bringas, P. and Slavkin, A. C. (1985) Dentin phosphoprotein expression during in vitro mouse tooth organ culture, in The chemistry and biology of mineralized tissues (ed. N. T. Butler ), Ebsco Media, Birmingham, AL, pp. 177–182.Google Scholar
  54. Magloire, H. and Dumont, J. (1976) Etude ultrastructurale de cellules pulpaires humaines cultivées in vitro. J. Biol. Buccale, 4, 3–20.Google Scholar
  55. Magloire, H., Hartmann, D. J., Couble, M. L. et al. (1985) Cytodifferentiation of human dental pulp cells in explant culture, in Tooth morphogenesis and differentiation (eds A. B. Belcourt and J. V. Ruch ), Colloque INSERM, Paris, pp. 119–126.Google Scholar
  56. Malinoff, H. L. and Wicha, M. S. (1983) Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells. J. Cell Biol., 96, 1475–1479.CrossRefGoogle Scholar
  57. Meyer, J. M., Fahre, M., Staubli, A. and Ruch, J. V. (1977) Relations cellulaires au cours de l’odontogenèse. J. Biol. Buccale, 5, 107–119.Google Scholar
  58. Meyer, J. M., Staubli, A. and Ruch, J. V. (1981a) Ultrastructural localization of concanavalin A binding sites on the surface of differentiating odontoblasts. Biol. Cell, 42, 193–196.Google Scholar
  59. Meyer, J. M., Staubli, A. and Ruch, J. V. (1981b) Ruthenium red staining and tannic acid fixation of dental basement membrane. Cell Tissue Res., 220, 589–597.CrossRefGoogle Scholar
  60. Miake, Y., Yanagisawa, T. and Takuma, S. (1982) Electron microscopic study on the effects of vinblastine on young odontoblasts in rat incisor. J. Cell Biol., 10, 319–330.Google Scholar
  61. Mina, M. and Kollar, E. J. (1987) The induction of odontogenesis in non dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral Biol., 32, 123–127.CrossRefGoogle Scholar
  62. Mollenhauer, J. and von der Mark, K. (1983) Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes. EMBO J., 2, 45–50.Google Scholar
  63. Noden, D. M. (1982) The role of the neural crest in patterning of cranial skeletal connective and muscle tissues. Dev. Biol., 96, 144–165.CrossRefGoogle Scholar
  64. Olive, M. and Ruch, J. V. (1982) La différenciation fonctionnelle des odontoblastes d’embryons de souris implique une synthèse d’ADN sans division cellulaire. CR Acad. Sci. Paris, 295, 93–96.Google Scholar
  65. Osborn, J. W. (1978) A cladistic interpretation of morphogenesis. J. Biol. Buccale, 6, 327–338.Google Scholar
  66. Osman, A. and Ruch, J. V. (1976) Répartition topographique des mitoses dans l’incisive et la première molaire inférieures de l’embryon de souris. J. Biol. Buccale, 4, 331–348.Google Scholar
  67. Osman, A. and Ruch, J. V. (1978) Contribution à l’étude des parametres du cycle cellulaire au cours de l’odontogenèse chez la souris. J. Biol. Buccale, 6, 43–54.Google Scholar
  68. Osman, M. and Ruch, J. V. (1981a) 3H-Glucosamine and 3H-proline radioautography of embryonic mouse dental basement membrane. J. Craniofac. Genet. Develop. Biol., 1, 95–108.Google Scholar
  69. Osman, M. and Ruch, J. V. (1981b) Behavior of odontoblasts and basal lamina of trypsin or EDTA-isolated mouse dental papillae in short-term culture. J. Dent. Res., 60, 1015–1027.CrossRefGoogle Scholar
  70. Osman, M., Meyer, J. M., Staubli, A. and Ruch, J. V. (1981) Cytochemical localization of adenylate-cvclase in embryonic molars. Acta Nistochenr., 68, 91–102.Google Scholar
  71. Partanen, A. M. and Thesleff, I. (1987) The role of transferrin in tooth morpho-genesis: retention of transferrin by mouse embryonic teeth in organ culture. Differentiation, 34, 18–25.CrossRefGoogle Scholar
  72. Pourtois, M. (1964) Comportement en culture in vitro des ébauches dentaires de rongeurs prélevées aux stades de prédifférenciation. J. Embryo!. Exp. Morph., 12, 391–405.Google Scholar
  73. Pourtois, M. (1966) Etude de la différenciation des onotoblastes en culture in vitro. Arch. Biol., 77, 107–137.Google Scholar
  74. Pytela, R., Pierschbacher, M. D. and Ruoslahti, E. (1985) Identification of a 140Kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell, 40, 191–198.CrossRefGoogle Scholar
  75. Ruch, J. V. (1985) Odontoblast differentiation and the formation of the odontoblast layer. J. Dent. Res. (special issue), 64, 489–498.Google Scholar
  76. Ruch, J. V. (1987) Determinisms of odontogenesis. RBC—Cell Biology Reviews, Springer International, 11, 4.Google Scholar
  77. Ruch, J. V. and Karcher-Djuricic, V. (1971a) Action de la 5-fluorodeoxyuridine sur la différenciation in vitro de molaires d’embryons de souris. Arch. Biol. (Liège), 82, 115–129.Google Scholar
  78. Ruch, J. V. and Karcher-Djuricic, V. (1971b) Mise en évidence d’un • rôle spécifique de l’épithélium adamantin dans la différenciation et le maintien des odontoblastes. Ann. Embryo!. Morph., 4, 359–366.Google Scholar
  79. Ruch, J. V., Karcher-Djuricic, V. and Gerber, R. (1973) Les déterminismes de la morphogenèse et des cytodifférenciations des ébauches dentaires de souris. J. Biol. Buccale, 1, 45–56.Google Scholar
  80. Ruch, J. V., Karcher-Djuricic, V., Staubli, A. and Fabre, M. (1975) Effets de la–cytochalasine B et de la colchicine sur les différenciations dentaires in vitro. Arch. Anat. Microsc. Morph. Exp., 64, 113–134.Google Scholar
  81. Ruch, J. V., Karcher-Djuricic, V. and Thiebold, J. (1976) Cell division and cytodifferentiation of odontoblasts. Differentiation, 5, 165–169.CrossRefGoogle Scholar
  82. Ruch, J. V., Karcher-Djuricic, V., Osman, M. et al. (1978) Action of 5-bromodeoxyuridine on tooth germs in vitro: I. Effects on cytodifferentiation. J. Biol. Buccale, 6, 267–279.Google Scholar
  83. Ruch, J. V., Lesot, H., Karcher-Djuricic, V. et al. (1982) Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation, 21, 7–12.CrossRefGoogle Scholar
  84. Ruch, J. V., Lesot, H., Karcher-Djuricic, V. et al. (1983) Epithelial—mesenchymal interactions in tooth germs: mechanisms of differentiation. J. Biol. Buccale, 11, 173–193.Google Scholar
  85. Ruch, J. V., Lesot, H. and Kubler, D. (1987) Matrix cytoskeleton interactions during ondotoblast and ameloblast, in The cytoskeleton in cell differentiation and development (eds R. B. Maccioni and J. Arechaga), ISCU Press, Symposium series vol. 8, IRL Press, Oxford, pp. 293–303.Google Scholar
  86. Schröder, U. (1985) Effects of calcium hydroxide containing pulp capping agents on pulp cell migration, proliferation and differentiation. J. Dent. Res. (special issue), 64, 541–548.Google Scholar
  87. Schwartz, S. A. and Kirsten, W. H. (1973) Tissue-specific suppression of differentiation by 5-bromodeoxyuridine in vitro. J. Dent. Res., 53, 509–515.Google Scholar
  88. Sellman, S. (1946) Some experiments on the determination of the larval teeth in Amblystoma mexicarnun. Odontol. Tidskr., 54, 1–128.Google Scholar
  89. Semba, T. (1978) On the extracellular communication between the dentin and the pulp, in Formation and calcification of hard tissues (eds R. V. Talmage and M. Ozawa ), Shakaï Hoken, Tokyo, pp. 83–92.Google Scholar
  90. Slavkin, H. C. (1974) Embryonic tooth formation: a tool for developmental biology, in Oral sciences reviews (eds A. H. Melcher and G. A. Zarb ), Munksgaard, Copenhagen, p. 136.Google Scholar
  91. Slavkin, H. C., Zeichner-David, M. and Siddiqui, M. (1981) Molecular aspects of tooth morphogenesis and differentiation. Mol. Aspects Med., 4, 73–91.CrossRefGoogle Scholar
  92. Sofaer, J. A. (1975) Genetic variation in tooth development. Br. Med. Bull., 31, 107–110.Google Scholar
  93. Stent, G. S. (1987) Cell lineage in development. FEBS Lett., 215, 1–8.CrossRefGoogle Scholar
  94. Stone, L. (1926) Further experiments on the extirpation and transplantation of mesectoderm in Amblystoma punctatum. J. Exp. Zool., 44, 95–131.CrossRefGoogle Scholar
  95. Takagi, Y., Fujisawa, R. and Sasaki, S. (1986) Identification of dentin phos-phophoryn localization by histochemical stainings. Conn. Tissue Res., 14, 279–292.CrossRefGoogle Scholar
  96. Tanaka, T. (1980) The origin and localization of dentinal fluid in developing rat molar teeth studied with lanthanum as a tracer. Arch. Oral Biol., 25, 153–162.CrossRefGoogle Scholar
  97. Thesleff, I. and Hurmerinta, K. (1981) Tissue interactions in tooth development. Differentiation, 18, 75–84.CrossRefGoogle Scholar
  98. Thesleff, I., Lehtonen, E. and Saxen, L. (1978) Basement membrane formation in transfilter tooth culture and its relations to odontoblast differentiation. Differentiation, 10, 71–79.CrossRefGoogle Scholar
  99. Thesleff, I., Stenmann, S., Vaheri, A. and Timpl, R. (1979) Changes in the matrix proteins, fibronectin and collagen during differentiation of mouse tooth germs. Dev. Biol., 70, 116–126.CrossRefGoogle Scholar
  100. Thesleff, I., Barrach, H. T., Foidart, J. M. et al. (1981) Changes in the distribution of type IV collagen, laminen, proteoglycan and fibronectin during mouse tooth development. Dev. Biol., 81, 182–192.CrossRefGoogle Scholar
  101. Townsend, D. G., Alvesalo, L., Jensen, B. and Kari, M. (1988) Patterns of tooth size in chromosomal aneuploïdies. Seventh International Symposium on Dental Morphology,Paris (in press).Google Scholar
  102. Veis, A. (1985) Phosphoprotein of dentin and bone: do they have a role in matrix mineralisation?, in The chemistry and biology of mineralized tissues (ed. W. T. Butler ), Ebsco Media, Birmingham, AL, pp. 170–177.Google Scholar
  103. Wagner, G. (1959) Untersuchungen an Bombinator-Triton-Chimären. Roux’Arch Entwicklungsrnech. Org., 151, 136–158.CrossRefGoogle Scholar
  104. Watt, F. M. (1986) The extracellular matrix and cell shape. TIBS, 11, 482–485.Google Scholar
  105. Yamamura, T. (1985) Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J. Dent. Res. (special issue), 64, 530–540.Google Scholar
  106. Zidan, G., Karcher-Djuricic, V. and Ruch, J. V. (1987) Monoclonal antibodies against mouse molar papilla: preliminary indirect immunofluorescence. J. Biol. Buccale, 15, 89–98.Google Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • J. V. Ruch

There are no affiliations available

Personalised recommendations