Microscopy

  • Terence Allen
Part of the Powder Technology book series (PTS)

Abstract

Microscopy is often used as an absolute method of particle size analysis since it is the only method in which the individual particles are observed and measured. It also permits examination of the shape and composition of particles with a sensitivity far greater than for any other technique. The representativeness of the sample under analysis is critical since measurements are carried out on such minute quantities. Sampling techniques and sample preparation should, therefore, be carefully considered and the statistical factors governing accuracy should be well known.

Keywords

Microscope Slide Particle Size Analysis Secondary Electron Emission Gear Train Amyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Green, M. (1921), J. Franklin Inst., 192, 657.CrossRefGoogle Scholar
  2. 2.
    Dunn, E.J. (1930), Ind. Engng. Chem., analyt. End, 2, 59.CrossRefGoogle Scholar
  3. 3.
    Orr, C. and Dallevalle, J.M. (1959), Fine Particle Measurement, Macmillan, NY.Google Scholar
  4. 4.
    Irani, R.R. and Callis, C.F. (1963), Particle Size, Wiley, NY.Google Scholar
  5. 5.
    Harwood, M.G. (1954), B.J. appI. Phys. suppl. 3, S193.Google Scholar
  6. 6.
    Rosinski, J., Glaess, H.E. and McCulley, C.R. (1956), Analyt. Chem.,28,486.CrossRefGoogle Scholar
  7. 7.
    Allen, R.P. (1942), Ind. Engng. Chem., analyt. End,14,92.Google Scholar
  8. 8.
    Lenz, F. (1954), Optik, 11, 524.Google Scholar
  9. 9.
    Ellison, J. McK. (1954), Nature, 179, 948.CrossRefGoogle Scholar
  10. 10.
    Green, M. (1946), Ind. Engng. Chem., 38, 679.CrossRefGoogle Scholar
  11. 11.
    Martin G. et al. (1923), Trans. Ceram. Soc,23, 61; (1926), 25, 51; (1928), 27, 285.Google Scholar
  12. 12.
    Heywood, H. (1946), Trans. Inst. Min. Metall.,55,391.Google Scholar
  13. 13.
    Feret, R.L. (1931), Assoc. Int. pour l’essai des Mnt. 2, Group D, Zurich.Google Scholar
  14. 14.
    Tomkieff, S.L. (1945), Nature, 155, 24.CrossRefGoogle Scholar
  15. 15.
    Moran, P.A.P. (1944), Nature, 154, 490.CrossRefGoogle Scholar
  16. 16.
    Herdan, G. (1960), Small Particle Statistics, Butterworths.Google Scholar
  17. 17.
    Steinheitz, A.R. (1946), Trans. Soc. Chem. Ind., 65, 314.CrossRefGoogle Scholar
  18. 18.
    Crowl, V.T. (1961), Paint Res. Station, Teddington, Memorandum No. 291, 12,24.Google Scholar
  19. 19.
    Aschenbrenner, B.C. (1955), Photogrammetric Engng.. 21, 376.Google Scholar
  20. 20.
    Walton, W.H. (1948), Nature, 162, 329.CrossRefGoogle Scholar
  21. 21.
    Nicholson, W.L. (1976), J. Microsc., 107,3,323 – 4.CrossRefGoogle Scholar
  22. 22.
    Timbrell, V. (1952), Nature,170,318 –9CrossRefGoogle Scholar
  23. 23.
    Barnett, M.I. and Timbrell, V. (Oct., 1962), Pharm.J 379.Google Scholar
  24. 24.
    Cauchy, A. (1840), C.R. Acad. Sci., Paris, 13, 1060.Google Scholar
  25. 25.
    Patterson, H.S. and Cawood, W. (1936), Trans. Faraday Soc.,32, 1084.CrossRefGoogle Scholar
  26. 26.
    Watson, H.H. (1936), Trans. Inst. Min. Metall., 46, 176.Google Scholar
  27. 27.
    Fairs, G.L. (1943), Chemy Ind, 62,374 – 8.Google Scholar
  28. 28.
    May, K.R. (1965), J. scient. Instrum., 22, 187.CrossRefGoogle Scholar
  29. 29.
    Watson, H.H. (1952), B.J. Ind. Med., 19, 80.Google Scholar
  30. 30.
    Hamilton, R.J. and Holdsworth, J.F. (1954), B.J. appI. Phys., suppl.3, S101.CrossRefGoogle Scholar
  31. 31.
    3406 (1963) Part 4.Google Scholar
  32. 32.
    Endter, F. and Gebauer, H. (1956), Optik, 13,87.Google Scholar
  33. 33.
    Heywood, H. (1946), Bull. Inst. Min. Metall., nos. 477, 478.Google Scholar
  34. 34.
    Watson, H.H. and Mulford, D.F. (1954), A particle profile test strip for assessing the accuracy of sizing irregularly shaped particles with a microscope.B.J. appI. Phys, suppl. 3, S105.Google Scholar
  35. 35.
    Fairs, G.L., Discussion, ibid., S108.Google Scholar
  36. 36.
    Walton, W.H., Survey of the automatic counting and sizing of particles,ibid., S121.Google Scholar
  37. 37.
    Vick, F.A. (1956), Sci. Prog.,94, 176, 655.Google Scholar
  38. 38.
    Morgan, B.B. (1957), Automatic particle counting and sizing.Research(Lond.), 10, 271.Google Scholar
  39. 39.
    Taylor, W.K. (1954), An automatic system for obtaining particle size distributions with the aid of the flying spot microscope.B.J. appI. Phys., suppl 3, S173.Google Scholar
  40. 40.
    Roberts, F. and Young, J.Z. (1952), Nature, 169, 962.CrossRefGoogle Scholar
  41. 41.
    Bell, H.A. (1954), Stages in the development of an arrested scan type microscope particle counter. B.J. appI. Phys., suppl 3, S156.Google Scholar
  42. 42.
    Mullard Film Scanning Particle Analyser, L. 188, Mullard Ltd, Technical Leaflet.Google Scholar
  43. 43.
    Crowl, V.T. (1960), The use of the Mullard film scanning particle size distribution counting from electron micrographs. Res. Mem. No. 284, Research Association of British Paint, Colour and Varnish Manufacturers.Google Scholar
  44. 44.
    Causley, D. and Young, J. (1955), Z. Res. 8, 430.Google Scholar
  45. 45.
    Furmidge, C.G.L. (1961), B.J. appI. Phys, 12, 268.CrossRefGoogle Scholar
  46. 46.
    Phillips, J.W. (1954), Some fundamental aspects of particle counting and sizing by linear scans. B.J. appI. Phys., suppl 3, S133 – 7.Google Scholar
  47. 47.
    Hawksley, P.G.W., Theory of particle sizing and counting by track scanning. ibid., S125–32.Google Scholar
  48. 48.
    Casella Automatic Particle Counter and Sizer (Booklet 906A), Cooke, Trough- ton & Simms Ltd.Google Scholar
  49. 49.
    Allen, T. and Kaye, B.H. (1965),Analyst,90, 1068, 147.Google Scholar
  50. 50.
    Walton, W.M. (1947), The application of the electron microscope to particle size measurement. Symp. Particle Size Analysis,Inst. Chem. Eng., 25, 64 – 76.Google Scholar
  51. 51.
    Fairs, G.L. (1951), J.R. microsc. Soc.,71,209.Google Scholar
  52. 52.
    Dyson, J. (1960), J. opt. Soc. Am., 50, 754 – 7.CrossRefGoogle Scholar
  53. 53.
    Payne, B.O. (1964), Microscope,14,6,217.Google Scholar
  54. 54.
    Dyson, J. (1961), AEI Engng,1,13.Google Scholar
  55. 55.
    Becher, P.(1964),J. Colloid Sci.,19,468.CrossRefGoogle Scholar
  56. 56.
    Kay, D.H. (1965),Techniques for Electron Microscopy,2nd edn.Blackwell Scientific Publications,Oxford.Google Scholar
  57. 57.
    Drummond, D.G. (ed.) (1950)The Practice of Electron Microscopy,Royal Microscopical Society, London.Google Scholar
  58. 58.
    Revell, R.S.M. and Agar, A.W. (1955), B.J. appI Phys.,6 23.CrossRefGoogle Scholar
  59. 59.
    Bradley, D.E. (1954), B.J. appI Phys,5,65.Google Scholar
  60. 60.
    Backus, R.C. and Williams, R.C. (1950), J. appI. Phys,21,11.Google Scholar
  61. 61.
    Bradley, D.E. and Williams, D.J. (1957), J. gen. Microbiol., 17, 75.Google Scholar
  62. 62.
    Bailey, G.W. and Ellis, J.R. (1954), Microscope,14, 6, 217.Google Scholar
  63. 63.
    Williams, R.C. and Wyckoff, R.W.G. (1946), J. appI. Phys.,17, 23.CrossRefGoogle Scholar
  64. 64.
    Cartwright, J. and Skidmore, J.W. (1953), Report No. 79, SMRE Sheffield.Google Scholar
  65. 65.
    Crowl, V.T. (1961), Report No. 291, Paint Research Station, Teddington.Google Scholar
  66. 66.
    Joffe, A.D. (1963), B.J. appI. Phys., 14, 7, 429.CrossRefGoogle Scholar
  67. 67.
    Maclay, W.N. and Grindter, E.M. (1963), J. Colloid Sci.,18, 343.CrossRefGoogle Scholar
  68. 68.
    Charman, W.N. (1961), Ph.D. Thesis, London Univ.Google Scholar
  69. 69.
    Taylor, N.J. (1969),Vacuum,19,575; J. Vacuum Sci. Tech. (1969),6,241.CrossRefGoogle Scholar
  70. 70.
    Chang, C.C. (1971),Surface Sci,25,23.CrossRefGoogle Scholar
  71. 71.
    Brundle,C.R.(1972), Surface and Defect Properties of Solids,6, Ch. 6,Chem. Soc.,London.Google Scholar
  72. 72.
    Rowe, S.H. (1966),Microscope,15, 216.Google Scholar
  73. 73.
    Welford, G.A. (1960), Optics in Metrology, 85.Google Scholar
  74. 74.
    Timbrell, V. (1972), J. appI. Phys., 43, 11, 4839.CrossRefGoogle Scholar
  75. 75.
    Timbrell, V. (1972), Microscope, 20, 365.Google Scholar
  76. 76.
    Timbrell, V. (1973), Harold Hey wood Memorial Symposium, Loughborough Univ., England.Google Scholar
  77. 77.
    Fairs, G.L. (1951), J.R. microsc., Soc., 71, 209.Google Scholar
  78. 78.
    Guruswamy, S. (1967), Particle Size Analysis, Soc. Analyt. Chem.,29–31.Google Scholar
  79. 79.
    Chatfield, E.J. (1967),J. scient. Instrum.,44,615.CrossRefGoogle Scholar
  80. 80.
    Lark, P.D. (1965),Microscope , 15,1 – 6.Google Scholar
  81. 81.
    Krumbien, W.C. (1934),J. Sediment. Petrol,4,65 – 7.Google Scholar
  82. 82.
    Dyson, J. (1959),Nature,184, 1561.CrossRefGoogle Scholar
  83. 83.
    Davies, R. (1970), Illinois State Microscopical Society Seminar.Google Scholar
  84. 84.
    Jesse, A. (1971), Microscope, 19, 1, 21 – 30.Google Scholar
  85. 85.
    Cole, M., ibid., 87 – 103.Google Scholar
  86. 86.
    Huna, W., ibid., 2, 205–18.Google Scholar
  87. 87.
    Williams, G. (1971), Bull. Soc. fr. Ceram,90,59 –63.Google Scholar
  88. 88.
    Stutzer, M., ibid., 65 – 68.Google Scholar
  89. 89.
    Amor, A.F. and Block, M. (1968,J.R. microsc. Soc,88, 4,601–5.Google Scholar
  90. 90.
    Hamilton, R.J. and Phelps, B.A. (1956), B.J. appI. Phys., 7, 186.CrossRefGoogle Scholar
  91. 91.
    Pidgeon, F.D. and Dodd, C.G. (1954), Analyt. Chem., 26,1823 – 8.CrossRefGoogle Scholar
  92. 92.
    McCrone, W.C. (1970), Microscope, 18, 1, 1.Google Scholar
  93. 93.
    Delly, J.G. (1969), ibid., 17, 205–11.Google Scholar
  94. 94.
    Corcoran, J.F. (1970), Fuel, 49,3, 331 –4.CrossRefGoogle Scholar
  95. 95.
    Eckert, J.J.D. and Caveney, R.J. (1970), J. Phys. E., 413–14.Google Scholar
  96. 96.
    Nathan, I.F., Barnett, M.I. and Turner, T.D. (1972), Powder Technol,5, 2, 105 – 10.CrossRefGoogle Scholar
  97. 97.
    Anon. (1967), Ceramic Age, December.Google Scholar
  98. 98.
    Barbery, G. (1974), Powder Technol,9, 5/6, 231–40.Google Scholar
  99. 99.
    Sahu, B.K. (1976), ibid,13,295–6.Google Scholar
  100. 100.
    Ellison, J. McK. (1954),Nature, 173,948.CrossRefGoogle Scholar
  101. 101.
    Eckhoff, R.K. and Enstad, G. (1975), Powder Technol,11,1 – 10.Google Scholar
  102. 102.
    Proctor, T.D. and Harris, G.W. (1974), J. Aerosol. Sci,5,1, 81 – 90.Google Scholar
  103. 103.
    Proctor, T.D. and Barker, D., ibid., 91 – 9.Google Scholar
  104. 104.
    Hay, W. and Sandberg, P. (1967), Micropaleontology,13, 407 –18.Google Scholar
  105. 105.
    Krinsley, D. and Margolis, S. (1969), Trans. N.Y. Acad. Sci, 31, 457 – 77.Google Scholar
  106. 106.
    Willard, R.J. and Hjelmstad, K.E. (1969/70), Powder Technol, 3, 311 – 13.Google Scholar
  107. 107.
    Turner, G.A., Fayed, E. and Zackariah, K. (1972), ibid., 6, 33 – 37.Google Scholar
  108. 108.
    White, E.W. et al., (1970), Proc. 3rd Ann. Scanning Electron Microscope Symp,Illinois Institute of Technology Res. Inst., Chicago, pp. 57 – 64.Google Scholar
  109. 109.
    Duncan, A.A. (1974), Report MH SMP-74-19-F. Dept. NTIS, USA 7 pp.Google Scholar
  110. 110.
    Hallworth, G.W. and Barnes, P. (1974), J. Pharm. Pharmac, Suppl. 26, 78 – 79.Google Scholar
  111. 111.
    ASTM (1976), Annual Book of Standards, Part 41, Particle Size Measurement, Microscopy, E20-68 (Reapproved 1974).Google Scholar
  112. 112.
    Exner, H.E. and Linck, E. (1977), Powder Metall. Int,9, 3, 131–3.Google Scholar
  113. 113.
    Morton, R.R.A., Measurement and Analysis of Electron Beam Microscope Images,Form 7050, Bausch and Lomb.Google Scholar
  114. 114.
    Morton, R.R.A. and Martens, A.E. (1972), Res. Develop., 23, 1, 24 – 26, 28.Google Scholar
  115. 115.
    Gahm, J. (1975), Spec. Iss. Pract. Metall., 5, 29 – 46, Dr Riederer, Stuttgart.Google Scholar
  116. 116.
    Gahm, J. (1975), Spec. Iss. Res. Film, 8, 6, 553–-68.Google Scholar
  117. 117.
    Gahm, J. (1975), Fortschr. Minerol, 53, 1, 79 – 128.Google Scholar
  118. 118.
    Walton, W.H. (1947), Trans. Inst. Chem. Engrs, Suppl. 25, 64.Google Scholar
  119. 119.
    Dullien, F.A.L., Rhodes, E. and Schroeter, S.R. (1969/70), Powder Technol, 3, 124–35.Google Scholar
  120. 120.
    Dullien, F.A.L. and Mehta, P.N. (1972),ibid,5, 179–94.Google Scholar
  121. 121.
    Dullien, F.A.L. (1973), Am. Chem. Soc. Div. Org. Coat. Plast. Chem. Pap. 33, 2, 516–24.Google Scholar
  122. 122.
    Dullien, F.A.L. and Dhawan, G.K. (1974), J. Colloid Interfac. Sci., 47, 2, 337 – 49.CrossRefGoogle Scholar
  123. 123.
    Szalkowski, F.J. (1977), ibid., 58, 2, 199 – 215.Google Scholar
  124. 124.
    Perry, R.W., Harris, J.E.C, and Scullion, H.J. (1977), In: Particle Size Analysis Conf. (ed. M.J. Groves) Chem. Soc. Anal. Div., (1978), Heyden.Google Scholar
  125. 125.
    Morton, R.R.A. and McCarthy, C. (1975),Microscope,23, 4, 239 – 60.Google Scholar
  126. 126.
    Davies, R. (1972),Leitz-Nutteilung.Wiss,U. Techn. Suppl,1,3, 65 – 74.Google Scholar
  127. 127.
    Alliet, D.F., Tietjen, T.A. and Wood, D.H. (1977), In: Particle Size Analysis Conf. (ed. M.J. Groves) Chem. Soc. Anal. Div., (1978), Heyden.Google Scholar
  128. 128.
    Anon. (1975), Microscope, 23, 2, VI and VII.Google Scholar
  129. 129.
    Jesse, A. (1976), Automatic image analysis; Bibliography (1973 – 1975); 676 References, ibid,24, 1, 1 – 95.Google Scholar
  130. 130.
    Chu, Y.F. and Ruckenstein, E. (1976),J. Catalysis,41, 3, 373 – 83.CrossRefGoogle Scholar
  131. 131.
    Ruzek, J. and Zbuzek, B. (1975),Silikaty,19, 1, 49 – 66.Google Scholar
  132. 132.
    Anon. (1978), Powder Metall. Int., 10, 2, 95.Google Scholar
  133. 133.
    Hartman, A.W. (1984), Powder Technol, 39, 49.CrossRefGoogle Scholar
  134. 134.
    Hartman, A.W. (1986), Powder Technol, 42, 269.CrossRefGoogle Scholar
  135. 135.
    Hartman, A.W. (1986),Powder Technol,46,109.CrossRefGoogle Scholar
  136. 136.
    Elkington, D.A. and Wilson, R. (1985), Particle Size Analysis(ed. P.J. Lloyd ),Wiley.Google Scholar
  137. 137.
    Kenny, L.C. ibid.Google Scholar
  138. 138.
    Groen, F.C.A., Young, I.T. and Ligthart, T. (1985), Cytometry,6,81.CrossRefGoogle Scholar
  139. 139.
    Reference stage graticule for image analyser calibration National Physical Laboratory,Teddington,Middlesex,UK.Google Scholar
  140. 140.
    Meloy, T.P. and Clark, N.N. (1986), Partec, Nurenberg, April, 1986Google Scholar

Copyright information

© T. Allen 1990

Authors and Affiliations

  • Terence Allen
    • 1
  1. 1.E.I. Dupont de Nemour and Company WilmingtonUSA

Personalised recommendations