Advertisement

Centrifugal methods

  • Terence Allen
Part of the Powder Technology book series (PTS)

Abstract

Gravitational sedimentation techniques have limited worth for particles below about 5 µm in size due to the long settling times involved. In addition, most sedimentation devices suffer from the effects of convection, diffusion and Brownian motion. These difficulties may be reduced by speeding up the settling process by centrifuging the suspension.

Keywords

Particle Size Analysis Cylindrical Tube Centrifugal Method Clear Liquid Homogeneous Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steel, J.G. and Bradfield, R. (1934), Am. Soil Survey Assoc. Rep., 14th Ann. Mtg Bull., No. 15, 88.Google Scholar
  2. 2.
    Marshall, C.E. (1930), Proc. R. Soc., A126, 427.Google Scholar
  3. 3.
    Whitby, K.T. (1955), Heat, Pip. Air Condit., 61, 449.Google Scholar
  4. 4.
    Whitby, K.T. (1955), J. Air Poll. Control Ass., 5, 120.Google Scholar
  5. 5.
    Whitby, K.T., Algren, A.B. and Annis, J.C. (1958), ASTM Sp. Publ. No. 234, 117.Google Scholar
  6. 6.
    Cartwright, L.M. and Gregg, R.Q. (1958), ibid., 127.Google Scholar
  7. 7.
    Dewell, P. (Sept., 1966), Particle Size Analysis Conf, Loughborough, 1966. Soc. Analyt. Chem.Google Scholar
  8. 8.
    Irani, R.R. and Fong, W.S. (1961), Cereal Chem, 38, 67.Google Scholar
  9. 9.
    Bradley, D. (1962), Chem. Proc. Engng, 43, 591, et seq., 634, et seq.Google Scholar
  10. 10.
    Groves, M.J., Kaye, B.H. and Scarlet, B. (1964), Br. Chem. Eng., 9, 11, 742.Google Scholar
  11. 11.
    Kaye, B.H. (1962), BP 895 222.Google Scholar
  12. 12.
    Atherton, E. and Tough, D. (1965), J. Soc. Dyers Colour., 624.Google Scholar
  13. 13.
    Tough, D. (1965), Am. Dyestuffs Rep., 54, 17, 34.Google Scholar
  14. 14.
    Treasure, C.R.G., private communication.Google Scholar
  15. 15.
    Marshall, C.E., Keen, B.A. and Schofield, R.K. (1930), Nature, 126, 94.CrossRefGoogle Scholar
  16. 16.
    Norton, F.H. and Spiel, S.J. (1938), J. Am. Ceram. Soc., 21, 89.CrossRefGoogle Scholar
  17. 17.
    Jacobson, A.E. and Sullivan, W.F. (1946), Ind. Engng. Chem. analyt. Edn, 18, 360.CrossRefGoogle Scholar
  18. 18.
    Menis, O., House, H.P. and Boyd, C.M. (1957), Oak Ridge National Laboratory Rep. 2345, 22, 86; (1958), 23, 87.Google Scholar
  19. 19.
    Conner, P., Hardwick, W.M. and Laundy, B.J. (1958), UKAEA Rep. AERE, CE/R2465.Google Scholar
  20. 20.
    Hildreth, J.D. and Patterson, D. (1964), J. Soc. Dyers Colour., 80, 474.CrossRefGoogle Scholar
  21. 21.
    Musgrove, J.R. and Harner, H.R. (1947), Turbimetric Particle Size Analysis Eagle Pilcher Co., Cincinnati, Ohio, USA Google Scholar
  22. 22.
    Irani, R.R. and Callis, C.E. (1963), Particle Size Measurement, Wiley, NY.Google Scholar
  23. 23.
    Orr, C. and Dallavalle, J.M. (1960),Fine Particle Measurement, Macmillan, NY.Google Scholar
  24. 24.
    Gupta, A.K. (1959), J. apll. Chem.,9, 487.CrossRefGoogle Scholar
  25. 25.
    Romwalter, A. and Vendl, M. (1935), Kolloid Z, 72, 1.CrossRefGoogle Scholar
  26. 26.
    Brown, C. (1944), J. Phys. Chem., 48, 246.CrossRefGoogle Scholar
  27. 27.
    Martin, S.W. (1939), Ind. Engng Chem. analyt. Edn, 11, 471 – 5.CrossRefGoogle Scholar
  28. 28.
    Martin, S.W. and Robison, H.E. (1948), J. Phys. Colloid Chem., 52, 854–81; (1949) ibid., 53, 860–86.Google Scholar
  29. 29.
    Murley, R.D. (1965), Nature, 207, 1089.CrossRefGoogle Scholar
  30. 30.
    Donoghue, J.K. and Bostock, W. (1955), Trans. Inst. Chem. Engrs, 33, 72.Google Scholar
  31. 31.
    Berg, S. (1940), Ingen. Vidensk. Skr. B., no. 2.Google Scholar
  32. 32.
    Kamack, H.J. (1951), Analyt. Chem., 23, 6, 844 – 50.CrossRefGoogle Scholar
  33. 33.
    Slater, C. and Cohen, L. (1962), J. scient. Instrum., 39, 614.CrossRefGoogle Scholar
  34. 34.
    Treasure, C.R.G. (1964), Whiting and Industrial Powders Research Council, Tech. Paper No. 50, 11 White Lion House, Town Centre, Hatfield, Herts.Google Scholar
  35. 35.
    Hauser, E.A. and Read, C.E. (1936), J. Phys. Chem., 40, 1169.CrossRefGoogle Scholar
  36. 37.
    Hauser, E.A. and Schachman, H.K. (1940), ibid., 44, 584.Google Scholar
  37. 37.
    Hauser, E.A. and Lynn, J.E. (1940), Ind. Engng Chem., 32, 660.CrossRefGoogle Scholar
  38. 38.
    Fancher, G., Oliphant, S.C. and Houssiere, C.R. (1942), Ind. Engng Chem., analyt. Edn, 14, 552.CrossRefGoogle Scholar
  39. 39.
    McIntosh, J. and Seibie, F.E. (1940), Br. J. exp. Path., 21, 143.Google Scholar
  40. 40.
    Schachman, H.K. (1948), J. Phys. Colloid Chem., 52, 1034 – 45.CrossRefGoogle Scholar
  41. 41.
    Saunders, E. (1948), Analyt. Chem., 20, 379.CrossRefGoogle Scholar
  42. 42.
    Svedberg, T. (1938), Ind. Engng Chem., analyt. Edn, 10, 113.CrossRefGoogle Scholar
  43. 43.
    Svedberg, T. and Peterson, K.O. (1940), The Ultracentrifuge, Oxford Univ. Press.Google Scholar
  44. 44.
    Alexander, J. (ed.), (1926), Colloid Chemistry, Chemical Catalogue Co., NY, Chapter 6.Google Scholar
  45. 45.
    McCormick, H.W. (1964), J. Colloid Sci., 19, 173.CrossRefGoogle Scholar
  46. 46.
    Brodnyan, J.G. (1960), ibid., 15, 563.Google Scholar
  47. 47.
    Martin, J.J., Brown, J.H. and de Bruyn, P.L. (1963), In: Ultrafine Particles(ed. L. Kuhn), Wiley, NY.Google Scholar
  48. 48.
    Moser, H. and Schmidt, W. (1957), Das Papier, II, 189; (1963), ibid., 377.Google Scholar
  49. 49.
    Allen, T. and Svarovsky, L. (1972), Proc. Soc. Analyt. Chem., 9, 2, 38 – 40.Google Scholar
  50. 50.
    Harris, C.C. (1969), AMIE Trans, 244, 187.Google Scholar
  51. 51.
    Svarovsky, L. and Friedova, J. (1972), Powder Technol, 5, 5, 273 – 7.CrossRefGoogle Scholar
  52. 52.
    Bayness, J.E., Attaway, A.V. and Young, B.W. (1972), Proc. Soc. Analyt. Chem., 9, 4, 83 – 6.CrossRefGoogle Scholar
  53. 53.
    Statham, B.R. (1972), Proc. Soc. Analyt. Chem., 9, 2, 40 – 3.Google Scholar
  54. 54.
    Scarlett, B., Rippon, M. and Lloyd, P.J. (1967), Particle Size Analysis, Soc. Analyt. Chem. 242.Google Scholar
  55. 55.
    Allen, T. (1968), Powder Technol, 2, 133.CrossRefGoogle Scholar
  56. 56.
    Vaughan, G.N., Ford, R.W. and West, H.W.H. (1969), Proc. Br. Ceram. Soc 13, 47 – 56.Google Scholar
  57. 57.
    Naumann, D. and Seydel, K.J. (1969), Plaste Kaut, 15, 2, 136 – 8.Google Scholar
  58. 58.
    Atherton, E. and Cooper, A.C. (1962), BP 983 760.Google Scholar
  59. 59.
    Atherton, E., Cooper, A.C. and Fox, M.R. (1964), J. Soc. Dyers Colour., 26, 62.Google Scholar
  60. 60.
    McDonald, D.P. (1969), Chem. Proc., 15, 3, 22 – 23.Google Scholar
  61. 61.
    Carr, W. (1970), Paint Oil Colour J., 157, 37/34, 8, 82 – 83.Google Scholar
  62. 62.
    Carr, W. (1970), J.Oil Colour Chem. Assoc., 53, 1, 81.Google Scholar
  63. 63.
    Carr, W. (1971), ibid., 54, 155–73.Google Scholar
  64. 64.
    Carr, W. (1971), Paint Tech., 35, 1, 16 – 23.Google Scholar
  65. 65.
    Carr, W. (1972), Proc. Symp. Particle Size Analysis, Bradford (1970), Soc. Analyt. Chem.Google Scholar
  66. 66.
    Beresford, J. (1967), J. Oil Colour Chem. Assoc., 50, 7, 594 – 614.Google Scholar
  67. 67.
    Toyoshima, Y. (1970), J. Jap. Soc. Col. Mat., 43, 7, 325–32, 364–9.Google Scholar
  68. 68.
    Burt, M.W.F. (1964), AWRE Rep. 0-76/64.Google Scholar
  69. 69.
    Jones, M.H. (1966), Proc. Soc. Analyt. Chem., 3, 116.CrossRefGoogle Scholar
  70. 70.
    Jones, M.H. (1969), US Pat. 3 475 968.Google Scholar
  71. 71.
    Kamack, H.J. (1972), Br. J. appI. Phys., 5, 1962 – 8.Google Scholar
  72. 72.
    Svarovsky, L. and Svarovska, J. (1975), J. Phys. D, 5, 1962 – 8.Google Scholar
  73. 73.
    Svarovsky, L. and Svarovska, J. (1976), J. Phys. E, 9, 959 – 62.CrossRefGoogle Scholar
  74. 74.
    Svarovsky, L. and Svarovska, J. (1976), Dechema Monogram, Nuremberg 1975, Numbers 1589–1615, 293 – 308.Google Scholar
  75. 75.
    Prochazka, D. (1970), Proc. Conf. Dispersoidal Analysis, Pardubice, Dum Techniky CVTS Pardubice 60/577/70, 61 – 65.Google Scholar
  76. 77.
    Alex, W. (1972), Dissertation, Univ. Karlsruhe, W. Germany.Google Scholar
  77. 78.
    Lloyd, P.J., Scarlett, B. and Sinclair, I. (1972), Proc. Symp. Particle Size Analysis, Bradford (1970), Soc. Analyt. Chem., London, 267 – 75.Google Scholar
  78. 79.
    Allen, T. and Svarovsky, L. (1976), Dechema Monogram, Nuremberg 1975, Numbers 1589 – 1615, 279 – 92.Google Scholar
  79. 80.
    Brugger, K. (1976), Powder Technol, 13, 215 – 21.CrossRefGoogle Scholar
  80. 81.
    Kanellopoulos, A.G. and Wood, R.J. (1976), Pestic. Sci., 7, 75 – 85.CrossRefGoogle Scholar
  81. 82.
    Wood, R.J. et al(1976), Powder Technol, 13, 143 – 9.CrossRefGoogle Scholar
  82. 83.
    Kanellopoulos, A.G. and Wood, R.J. (1978), ibid., 19, 283–5.Google Scholar
  83. 84.
    Groves, M.J. and Yalabik, H.S. (1974), Pharm. Pharmacol. Suppl. 26, 77 – 78.Google Scholar
  84. 85.
    Groves, M.J. and Yalabik, H.S. (1975), Powder Technol, 11, 3, 245 – 56.CrossRefGoogle Scholar
  85. 86.
    Groves, M.J. and Yalabik, H.S. (1975), ibid., 12, 233–8.Google Scholar
  86. 87.
    Zwicker, J.D. (1972), ibid., 6, 133–8.Google Scholar
  87. 88.
    Wnek, W.J. (1978), ibid., 19, 1, 129-32.Google Scholar
  88. 89.
    Muschelknautz, E. (1974), Ger. Offen., 2 324 421.Google Scholar
  89. 90.
    Muschelknautz, E. (1967), Verh. dt. Ing. Z., 109, 17, 757 – 61.Google Scholar
  90. 91.
    Muschelknautz, E. (1975), Dechema Monogram, Nuremberg, 1979, Numbers 1589–1615, Part B, 267–77.Google Scholar
  91. 92.
    Sokolov, V l (1975), Zh. Prike. Khim. (Leningrad), 48, 7, 1651.Google Scholar
  92. 93.
    Wallace, T.P. et al(1975), J. Colloid Interfac. Sci., 51, 2, 283 – 91.CrossRefGoogle Scholar
  93. 94.
    Lombard, G.A. and Carr, W. (1975), J. Oil Colour Chem. Assoc., 58, 7, 246 – 51.Google Scholar
  94. 95.
    Provder, T. and Holsworth, R.M. (1976), Am. Chem. Soc. Div. Org. Coat. Plast. Chem. Prep., 36, 150 – 6.Google Scholar
  95. 96.
    Khalili, M. (1979), M.Sc. Thesis, Univ. Bradford, England.Google Scholar
  96. 97.
    Allen, T. (1988), Powder Technol., 50(3), 193 – 200.Google Scholar
  97. 98.
    Coll, H. and Oppenheimer, L.E. (1985), Polymeric Materials Sci. and Eng., 53, Proc. ACS Div. of Polymeric Mat: Science and Engg., Am. Chem. Soc., Washington DC.Google Scholar
  98. 99.
    Coll, H. and Oppenheimer, L.E. (1987), ‘Particle size distribution, assessment and characterisation’ (ed. T. Provder, ACS Symp. Ser. No. 332, Am. Chem. Soc., Washington DC.Google Scholar
  99. 100.
    Coll, H., Oppenheimer, L.E. and Searles, C.G. (1985), J. Colloid Interface Sci., 104, 193.CrossRefGoogle Scholar
  100. 101.
    Coll, H. and Searles, C.G. (1984), J. Colloid Interface Sci., 110, 65.CrossRefGoogle Scholar
  101. 102.
    Koehler, M.E., Zander, R.A., Provder, T. and Nieman, T.F. (1987), ‘Particle size distribution, assessment and characterisation’ (ed. T. Provder, ACS Symp.Ser. No. 332, Am. Chem. Soc., Washington DC.Google Scholar
  102. 103.
    Kohler, M.E. and Provder, T., ibid.Google Scholar
  103. 104.
    Holsworth, R.M., Provder, T. and Stansbrey, J.J., ibid.Google Scholar
  104. 105.
    Gafford, R.D., ibid.Google Scholar
  105. 106.
    Dumm, T.F. and Hogg, R. (1986), Part. Charact., 3, 122.CrossRefGoogle Scholar
  106. 107.
    Kaya, N., Yokoyama, T., Arakawa, M. (1986), Partec, Nurenberg, April.Google Scholar
  107. 108.
    Kaya, N., Yokoyama, T., Arakawa, M. and Yazawa, N. (1986), Kona, Powder Sci. Technol., Japan, 23, 430.CrossRefGoogle Scholar

Copyright information

© T. Allen 1990

Authors and Affiliations

  • Terence Allen
    • 1
  1. 1.E.I. Dupont de Nemour and Company WilmingtonUSA

Personalised recommendations