Advertisement

The physiology of the teleostean optic tectum

  • Simon D. M. Guthrie

The kind of functional questions that one wishes to ask about the tectum are: (1) How is information from the visual afferents refined within the tectum, if indeed it is? (2) How is it combined with other types of information? (3) What are the specific functions of the conspicuous morphological cell types of the tectum? (4) What use is made of this information behaviourally, that is to say, in terms of motor function?

Keywords

Optic Nerve Receptive Field Retinal Ganglion Cell Crucian Carp Optic Tectum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akert, K. (1949) Der visuelle Greifereflex. Helv. Physiol. Pharm. Acta. 7, 112–34.Google Scholar
  2. Ali-Akell, A.S., Guthrie, D.M. and Banks, J.R. (1986) Motor responses to localised electrical stimulation of the tectum in the freshwater perch (Perca ftuviatilis). J. Neurosci., 19, 1381–91.Google Scholar
  3. Avery, J.A., Bowmaker, J.K., Djamgoz, M.B.A. and Downing, J.E.G. (1983) Ultraviolet sensitive receptors in a freshwater fish. J. PhysiolLond., 334, 23–4 P.Google Scholar
  4. Barlow, H.B., Hill, R.M. and Levick, W.R. (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol., Lond., 173, 377–407.Google Scholar
  5. Barthélémy, L., Peyraud, C., Belaud, A. and Mabin, D. (1975) Étude électro- encephalographique de l’anguille (Anguilla anguïlla L.). J. Physiol., Paris, 70, 173–85.Google Scholar
  6. Beauchamp, R.D. and Daw, N.W. (1972) Rod and cone input to single goldfish optic nerve fibres. Vision Res., 12, 1201–12.Google Scholar
  7. Beauchamp, R.D. and Lovasik, J.V. (1973) Blue mechanism response of single goldfish optic fibres. J. Neurophysiol., 36, 925–39.Google Scholar
  8. Boulet, P.C. (1958) Contribution à l’étude expérimentale de la perception visuelle du mouvement chez la perche et la seiche. Mém. Mus. Natn. Hist. Nat., Paris, Sér. A. Zool., 17, 1–131.Google Scholar
  9. Burkamp, H. (1923) Versuche über Farbenwiedererkennen der Fische. Z. Sinnes- physiol., 55, 133–70.Google Scholar
  10. Buser, P. (1955a) Analyse des réponses electriques du lobe optique à la Stimulation de la voie visuelle chez quelques vertébrés inférieurs, thesis, Masson, Paris.Google Scholar
  11. Buser, P. (1955b) Description et analyses topographiques des réponses à la stimulation du nerf optique. J. Physiol., Paris, 47, 737–68.Google Scholar
  12. Cajal, S.R. (1893) La rétine des vertébrés. Cellule, 9, 17–257.Google Scholar
  13. Cameron, J. (1974) Chromatic discrimination in the perch, PhD thesis, Sussex University.Google Scholar
  14. Contestabile, A. (1976a) Laminar acetylcholinesterase localisation in the optic tectum of three seawater teleosts. Experientia, 32, 625.Google Scholar
  15. Contestabile, A. (1976b) Comparative survey on enzyme localisation, ultrastructural arrangement and functional organisation in the optic tectum. Experientia, 32, 1223–9.Google Scholar
  16. Contestabile, A. (1978) Acetylcholinesterase concentration in the optic tectum and the cerebellum of three freshwater fish and three marine teleosts. Brain Res. (Amsterdam), 157, 182–5.Google Scholar
  17. Cronly-Dillon, J.R. (1964) Units sensitive to movement in goldfish optic tectum. Nature, Lond., 203, 214–15.Google Scholar
  18. Daw, N.W. (1968) Colour-coded ganglion cells in the goldfish retina; extension of their receptive fields by means of new stimuli. J. Physiol., Lond., 197, 567–92.Google Scholar
  19. Daw, N.W. (1975) Neurophysiology of colour vision. Physiol. Rev., 53, 571–611.Google Scholar
  20. Drujan, B.D., DiazBorges, J.M. and Brzin, M. (1979) Histochemical and cytochemical localisation of Ache in retina and optic tectum of teleost fish. Can. J. Biochem., 57, 43.Google Scholar
  21. Dunne-Meynell, A. and Sharma, S.C. (1986) The visual system of the channel catfish (Ictalurus punctatus) I. J. Comp. Neurol., 247, 32–55.Google Scholar
  22. Easter, S. (1972) Pursuit eye movements in the goldfish. Vision Res. (Amsterdam), 12, 673–88.Google Scholar
  23. Ebbesson, S.O.E. and Meyer, D.L. (1981) Efferents to the retina have multiple sources in teleost fish. Science, N.Y., 214, 924–8.Google Scholar
  24. Ekström, P. (1987) Distribution of cholineacetylase immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus). J. Comp. Neurol., 256, 494–515.Google Scholar
  25. Ewert, J.P. (1967) Aktivierung der Veraltensfolge beim Beutefang der Erdkrote. Z. Vergl. Physiol., 61, 41–70.Google Scholar
  26. Famiglietti, E.V., Kaneko, A. and Tachibana, M. (1977) Neuronal architecture of ‘on’ and ‘off’ pathways to ganglion cells in carp retina. Science, N.Y., 198, 1267–9.Google Scholar
  27. Francis, A. and Schecter, N. (1979) Activity of choline acetyl transferase and acetylcholine esterase in the goldfish optic tectum after disconnection. Neurochem. Res., 4, 547–52.Google Scholar
  28. Francis, A. and Schecter, N. (1980) Regional and subcellular distribution of cholinergic enzyme and receptor activity in the goldfish brain. Neuroscience, 5, 293–304.Google Scholar
  29. Freeman, J.A. (1979) Intracellular responses and receptor localisation of neurones in slices of goldfish tectum. Invest. Ophthalmol. Vis. Sci. (Supp. 5), 18, 228–37.Google Scholar
  30. Freeman, J.A. (1980) Localization and density of ACh receptors at goldfish ventro- tectal synapses computed from intracellular recordings in tissue slices. 27th Int. Cong. Physiol Sei., 14, 1450–52.Google Scholar
  31. Freeman, J.A., Schmidt, J.T. and Oswald, R.E. (1980) Effect of BTX on retinotectal transmission in the goldfish and the toad. Neuroscience, 5, 929–42.Google Scholar
  32. Friedlander, M J. (1983) The visual prosencephalon of teleosts, in Fish Neurobiology (eds R.E. Davis and R.G. Northcutt ), University of Michigan Press, Ann Arbor, pp. 91–116.Google Scholar
  33. Galand, G. and Liege, B. (1975) Réponses visuelles unitaires chez la truite, in Vision in Fishes, New Approaches in Research (ed. M.A. Ali ), Plenum, New York, pp. 127–36.Google Scholar
  34. Gasser, H.G. and Erlanger, J. (1927a) The role played by the sizes of the constituent fibres of a nerve trunk in determining the form of the action potential wave. Am. J. Physiol., 80, 522–47.Google Scholar
  35. Gasser, H.G. and Erlanger, J. (1927b) The role played by the constituent fibres of a nerve trunk in determining the form of the action potential wave. Am. J. Physiol., 80, 522–47.Google Scholar
  36. Gulley, R. I., Cochran, M. and Ebbesson, S.O.E. (1975) The visual connections of the adult flatfish, Achims lineatus. J. Comp. Neurol., 162, 309–20.Google Scholar
  37. Gunnarson, T. (1985) Morphology and physiology of horizontal cells in the perch, PhD thesis, Durham University.Google Scholar
  38. Guthrie, D.M. (1981) The properties of the visual pathways of a common freshwater fish (Perca fluviatilis) in relation to its visual behaviour. Symp. Soc. Exp. Biol., 9, 79–111.Google Scholar
  39. Guthrie, D.M. (1983a) Central visual processing in fish, in Vertebrate Neuroethology (eds J.P. Ewert and R. Capranica ), Plenum, London, pp. 381–412.Google Scholar
  40. Guthrie, D.M. (1983b) Integration and control by the central nervous system, in Control Processes in Fish Physiology (eds J.C. Rankin, T.J. Pitcher and R. Duggan ), Croom Helm, London, pp. 130–54.Google Scholar
  41. Guthrie, D.M. (1986) The role of vision, in The Behaviour of Teleost Fishes (ed. T.J. Pitcher ), Croom Helm, London, pp. 75–113.Google Scholar
  42. Guthrie, D.M. and Banks, J.R. (1974) Input characteristics of the optic tectum of teleost fish. Comp. Biochem. Physiol., 41, 83–92.Google Scholar
  43. Guthrie, D.M. and Banks, J.R. (1976) Patterned responses from widefield T2 neurones in the fish tectum. Brain Res., 104, 321–4.Google Scholar
  44. Guthrie, D.M. and Banks, J.R. (1978) The receptive field structure of visual cells from the optic tectum of the freshwater perch (Perca fluviatilis). Brain Res. (Amsterdam), 141, 211–25.Google Scholar
  45. Guthrie, D.M. and Sharma, S.C. (1988) Photic responses from morphologically identified neurones in the tectum of the goldfish. Soc. Neurosci. Abstr., 14, 1231.Google Scholar
  46. Guthrie, D.M., Banks, J.R. and Rudolfer, S.M. (1976) Statistical properties of spike trains from intrinsic cells in the optic tectum of teleost fish. Proc. IXth Int. Biom. Conf., Boston, Mass., 2, 71–90.Google Scholar
  47. Harosi, F.I. and Hashimoto, Y. (1983) U.V. visual pigment in a vertebrate: a tetrachromatic system in a dace (Tribolodon). Science, N.Y., 222, 1021–3.Google Scholar
  48. Henley, J., Lindstrom, J. and Oswald, R.E. (1986) Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. Science, N.Y., 232, 1627–9.Google Scholar
  49. Hida, E. and Naka, K.-I. (1982) Spatio-temporal visual receptor fields as revealed by spatio-temporal random noise. Z. Naturf., 37c, 1048–9.Google Scholar
  50. Hornby, P.J., Piekut, D.T. and Demski, L.S. (1987) Localisation of immunoreactive tyrosine hydroxylase in the goldfish brain. J. Comp. Neurol., 261, 1–14.Google Scholar
  51. Huang, B.Q. (1986) Visually-evoked startle responses in teleosts, PhD thesis, Aberdeen University.Google Scholar
  52. Huang, B.Q. and Djamgoz, M.B.A. (1988) An intracellular horseradish peroxidase study in the perch (Perca fluviatilis). Bull. Inst. Zool. Acad. Sin., 27, 183–93.Google Scholar
  53. Ingle, D. (1967) Two visual mechanisms underlying the behaviour of fish. Psychol. Forsch., 31, 44–51.Google Scholar
  54. Ito, H. and Murakami, T. (1984) Retinal ganglion cells in two teleost species Sebastiscus marmoratus and Navodon modestus. J. Comp. Neurol., 229, 80–96.Google Scholar
  55. Jacobson, M. (1964) Spectral sensitivity of single units in the optic tectum of the goldfish. Q. J. Exp. Physiol., 49, 384–94.Google Scholar
  56. Jacobson, M. and Gaze, R.M. (1964) Types of visual response from single units in the optic tectum and the optic nerve of the goldfish. Q. J. Exp. Physiol., 49, 199–209.Google Scholar
  57. Johnstone, J.R. and Mark, R.F. (1971) The efference copy neurone. J. Exp. Biol., 54, 403–14.Google Scholar
  58. Kageyama, G.H. and Meyer, R.L. (1987) Immunohistochemical localisation of GABA, CHAT, glutamate and aspartate in the visual system of goldfish and mice. Soc. Neurosci. Abstr., 13 (2), 860.Google Scholar
  59. Kawasaki, M. and Aoki, K. (1983) Visual responses recorded from the optic tectum of the Japanese dace (Tribolodon). J. Comp. Physiol., 152 (2), 147–54.Google Scholar
  60. Kien, J. and Menzel, R. (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I: broad band neurons. J. Comp. Physiol., 113, 17–34.Google Scholar
  61. Kien, J. and Menzel, R. (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II: broad narrow band and opponent neurons. J. Comp. Physiol., 113, 35–53.Google Scholar
  62. Kock, J-H. and Reuter, T. (1978a) Retinal ganglion cells in the crucian carp (Carassius carassius). i. Size and number of somata in eyes of different size. J. Comp. Neurol., 179, 535–48.Google Scholar
  63. Kock, J-H. and Reuter, T. (1978b) Retinal ganglion cells in the crucian carp (Carassius carassius). n. Overlap, shape and tangential orientation of dendritic trees. J. Comp. Neurol., 179, 549–68.Google Scholar
  64. Konishi, J. (1960) Electric response of visual center in fish especially to coloured light flash. Jap. J. Physiol., 10, 13–27.Google Scholar
  65. Laming, P. (1981) Brain Mechanisms in Lower Vertebrates, Cambridge University Press, Cambridge.Google Scholar
  66. Landau, W.M., Clare, M.H. and Bishop, G.H. (1968) Reconstruction of myelinated nerve tract action potentials: an arithmetic method. Exp. Neurol., 22, 480–90.Google Scholar
  67. Landreth, G.E., Neale, E.A., Neale, J.H., Duff, R.S., Bradford, M.R., Northcutt, R.G. and Agranoff, B.W. (1975) Evaluation of [3H]proline for autoradiographic tracing of axonal projections in the teleost visual system. Brain Res. (Amsterdam), 91, 25–35.Google Scholar
  68. Langdon, R.B. and Freeman, J.A. (1986) Antagonists of glutaminergic neurotrans-mission block retinotectal transmission in goldfish. Brain Res. (Amsterdam), 398, 169–74.Google Scholar
  69. Langdon, R.B. and Freeman, J.A. (1987) Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands strychnine and kynurenic acid. J. Neurosci., 7, 760–73.Google Scholar
  70. Lasater, E.M. (1982) Spatial receptive fields of catfish retinal ganglion cells. J. Neurophysiol., 48, 823–5.Google Scholar
  71. Levine, M.W. and Shefner, J.M. (1979) X-like and not X-like cells in goldfish retina. Vision Res., 19, 95–7.Google Scholar
  72. Luckenbill-Edds, L. and Sharma, S.C. (1977) Retinal projection of the adult winter flounder (Pseudopleuronectes americanus). J. Comp. Neurol., 173, 307–18.Google Scholar
  73. Mark, R.F. and Davidson, T.M. (1966) Unit responses from commissural fibers in the optic lobes of fish. Science, N.Y., 152, 797–9.Google Scholar
  74. Marks, W.B. (1965) Visual pigments of single goldfish cones. J. PhysiolLond., 178, 14–32.Google Scholar
  75. Matsumoto, N. and Bando, T. (1981) Long-lasting evoked potential and receptive firing recorded from the carp optic tectum in Cl-deficient medium in vitro. Brain Res. (Amsterdam), 225, 437–41.Google Scholar
  76. Matsumoto, N., Kiyama, H. and Bando, H. (1983) An intracellular study of the optic tectum of the carp in vitro. Neurosci. Lett., 38, 17–22.Google Scholar
  77. Meek, H. (1981) A Golgi-electronmicroscope study of the goldfish optic tectum. J. Comp. Neurol., 199, 149–73.Google Scholar
  78. Meyer, D.L., Schott, D. and Schaeffer, K.-P. (1970) Reizversuche im Tectum opticum freischwimmender Kabeljaue bzw. Dorsche (Gadus morhua). Pflügers Arch. ges. Physiol., 314, 240–52.Google Scholar
  79. Migani, P., Contestabile, A., Cristini, G. and Labanti, V. (1980) Evidence of intrinsic cholinergic circuits in the optic tectum of teleosts. Brain Res. ( Amsterdam ), 194, 125.Google Scholar
  80. Mizumo, M., Imai, S. and Tsukada, M. (1985) A microcomputer system for spatiotemporal visual receptive field analysis. Inst. Electrical Electronics Eng. (IEEE) Trans. Biomed. Eng., 32, 56–60.Google Scholar
  81. Naka, K.I. and Carraway, N.R.G. (1975) Morphological and functional identification of catfish retinal neurones. J. Neurophysiol., 38, 53–71.Google Scholar
  82. Naka, K.I. and Nye, P.W. (1970) Receptive field organisation of the catfish retina. J. Neurophysiol., 44, 625–42.Google Scholar
  83. Neale, J.H., Neale, E.A. and Agranoff, B.W. (1972) Radioautography of the optic tectum of the goldfish after intraocular injection of 3H proline. Science, N.Y., 176, 407–10.Google Scholar
  84. Nicholson, C. and Freeman, J.A. (1975) Theory of current source-density analysis. J. Neurophysiol., 38, 356–74.Google Scholar
  85. Niida, A. (1973) Visual responses from ipsilateral optic tectum of Crucian carp. J. Fac. Sci. Hokkaido Univ. Ser. VI, Zool., 19, 50–57.Google Scholar
  86. Niida, A. and Sato, Y. (1972) An analysis of visual responses in the optic tract and tectum of the Crucian carp. J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool., 18, 371–86.Google Scholar
  87. Niida, A., Oka, H. and Iwata, K.S. (1980) Visual responses of morphologically identified tectal neurones in the Crucian carp. Brain Res. (Amsterdam), 201, 361–6.Google Scholar
  88. Niida, A., Ohono, T. and Iwata, K. (1989) Efferent tectal cells of Crucian carp; physiology and morphology. Brain Res. Bull., 22, 389–98.Google Scholar
  89. Northmore, D.P.M. and Masino, T. (1984) Recovery of vision in fish after optic nerve crush: a behavioural and electrophysiological study. Exp. Neurol., 84, 109–25.Google Scholar
  90. Northmore, D.P.M., Skeen, J. and Pindzola, R. (1981) Visuomotor perimetry. Vision Res., 21, 78–85.Google Scholar
  91. Northmore, D.P.M., Williams, B. and Vanegas, H. (1983) The teleostean torus longitudinalis: responses to eye movements, visuotopic mapping and functional relationships with the optic tectum. J. Comp. Physiol. A., 150, 39–50.Google Scholar
  92. O’Benar, J.D. (1976) Electrophysiology of neural units in goldfish optic tectum. Brain Res. Bull., 1, 529–41.Google Scholar
  93. Ormond, R.W. (1974) Visually responsive cells in the goldfish optic tectum, Part I, PhD thesis, Cambridge University.Google Scholar
  94. Oswald, R.E. and Freeman, J.A. (1980) Optic nerve transmitters in lower vertebrates. Life Sci. (Oxford), 27, 527–33.Google Scholar
  95. Oswald, R.E. and Freeman, J.A. (1981) Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors. Neuroscience, 6, 1–14.Google Scholar
  96. Parent, A., Dube, L., Braford, M.R. and Northcutt, R.G. (1978) The organisation of monoamine-containing neurons in the brain of the sunfish (Lepomis) as revealed by fluorescence microscopy. J. Comp. Neurol., 182, 495–516.Google Scholar
  97. Prosser, C.L. and Nagai, T. (1968) Effects of low temperature on conditioning in goldfish, in The Central Nervous System and Fish Behaviour (ed. D. Ingle ), University of Chicago Press, Chicago, pp. 171–81.Google Scholar
  98. Ramstad, T. and Hughes, G.W. (1973) Localised unit responses in the optic tectum of the carp. Vision Res., 13, 1527–36.Google Scholar
  99. Raynauld, J.P. (1972) Goldfish retina: sign of the rod input in opponent color ganglion cells. Science, N.Y., 177, 84–5.Google Scholar
  100. Regan, D., Schellart, N.A.M., Spekreijse, H. and Berg, T.J.T. van den (1975) Photometry in goldfish by electrophysiological recording. Vision Res., 15, 799–808.Google Scholar
  101. Repérant, J., Lemire, M., Miceli, D. and Peyrichoux, J. (1976) A radioautographic study of the visual system in freshwater teleosts following intra-ocular injection of tritiated fucose and proline. Brain Res. (Amsterdam), 118, 123–31.Google Scholar
  102. Riemslag, F.C.C. and Schellart, N.A.M. (1978) Evoked potentials and spike responses to moving stimuli in the optic tectum of goldfish. J. Comp. Physiol., 128, 13–20.Google Scholar
  103. Ross, C.D. and Godfrey, D.A. (1986) Effect of enucleation on choline acetyltransferase activity in layers of goldfish optic tectum. Brain Res. (Amsterdam), 373, 49–56.Google Scholar
  104. Rowe, E. (1980) Intrinsic cells of the tectum of the rockbass Ambloplites and of the goldfish. Diss. Abstr., 41B, (3), 843.Google Scholar
  105. Rushton, W.A.H. (1965) Visual adaptation. The Ferrier Lecture. Proc. R. Soc., B, 162, 20–46.Google Scholar
  106. Sajovic, P. and Levin thai, C. (1982) Visual cells of zebrafish optic tectum. Mapping with small spots. Neuroscience, 7, 2407–40.Google Scholar
  107. Salvaterra, P.M. and Foders, R.M. (1979) 125I-alpha bungarotoxin and 3H-quinelidinyl benzilate binding in central nervous systems of different species. J. Neurochem., 32, 1509–17.Google Scholar
  108. Sandeman, D.C. and Rosenthal, N.P. (1974) Efferent axons in fish optic nerve and their effects on retinal ganglion cells. Brain Res. (Amsterdam), 68, 41–54.Google Scholar
  109. Sato, Y. (1974) Light and dark adaptation of tectal neurons in the crucian carp; the effect of stimulus parameters upon both neuronal threshold and response magnitude. J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool., 19, 315–37.Google Scholar
  110. Schade, J.P. and Weiler, I.J. (1959) Electroencephalographic patterns of the goldfish (Carassius auratus L.). J. Exp. Biol., 36, 435–52.Google Scholar
  111. Schellart, N.A.M. and Spekreijse, H. (1976) Shapes of receptive field centres in the optic tectum of the goldfish. Vision Res., 19, 459–61.Google Scholar
  112. Schellart, N.A.M., Riemslag, F.C.C. and Spekreijse, H. (1979) Centre surround organization and interactions in receptive fields of goldfish tectal units. Vision Res., 19, 459–67.Google Scholar
  113. Schilling, T.F. and Northcutt, R.G. (1987) Amniotes and anamniotes may possess homoplastic retinopetal projections from the isthmic tegmentum. Soc. Neurosci. Abstr., 13 (1), 130.Google Scholar
  114. Schmidt, J.T. (1979) The laminar organization of optic nerve fibres in the tectum of the goldfish. Proc. Roy. Soc. Lond. (B), 205, 287–306.Google Scholar
  115. Schmidt, J.T. and Freeman, J.A. (1980) Electrophysiological evidence that retinotectal synaptic transmission in the goldfish is nicotinic cholinergic. Brain Res. (Amsterdam), 187, 129–36.Google Scholar
  116. Scholes, J.H. (1979) Nerve fibre topography in the retinal projection to the tectum. Nature, Lond., 278, 620–24.Google Scholar
  117. Schwassmann, H.O. (1968) Visual projections upon the tectum in foveate marine teleosts. Vision Res., 8, 1337–48.Google Scholar
  118. Schwassmann, H.O. and Kruger, L. (1965a) Organisation of the visual projection upon the optic tectum of some freshwater fish. J. Comp. Neurol., 124, 113–26.Google Scholar
  119. Schwassmann, H.O. and Kruger, L. (1965b) Experimental analysis of the visual system of the four-eyed fish, Anableps microlepis. Vision Res., 5, 269–81.Google Scholar
  120. Shapley, R.M. and Gordon, J. (1978) The eel retina. Ganglion cell classes and spatial mechanisms. J. Gen. Physiol., 71, 139–55.Google Scholar
  121. Sharma, S.C., Berthoud, M. and Breckwoldt, R. (1987) Distribution of substance P- like immunoreactivity in the goldfish brain. J. Comp. Neurol., 279, 104–16.Google Scholar
  122. Spekreijse, H., Wagner, H.G. and Wohlbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. NeurophysioL, 35, 73–86.Google Scholar
  123. Springer, A. and Gaffney, J.S. (1981) Retinal projections in the goldfish: a study using cobaltous lysine. J. Comp. Neurol., 203, 401–24.Google Scholar
  124. Stone, J. (1983) Parallel Processing in the Visual System, Plenum, London.Google Scholar
  125. Strausfeld, N. (1976) Atlas of the Insect Brain, Springer, Berlin.Google Scholar
  126. Sutterlin, A.M. and Prosser, C.L. (1970) Electrical properties of goldfish optic tectum. J. Neurophsyiol., 33, 36–45.Google Scholar
  127. Szekely, G. (1973) Anatomy and synaptology of the optic tectum, Visual centres of the brain, in Handbook of Sensory Physiology VII/3B (ed. R. Jung ), Springer, Berlin, pp. 1–20.Google Scholar
  128. Tamura, T. and Hanyu, I. (1979) Pineal sensitivity in fishes, in Environmental Physiology of Fishes (ed. M. Ali ), Plenum, London, pp. 477–96.Google Scholar
  129. Tapp, R. (1974) Axon numbers and distribution, myelin thickness and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugenes plumieri. J. Comp. Physiol., 153, 267–74.Google Scholar
  130. Tumosa, N., Stell, W.K., Johnstone, C.D. and Epstein, M.I. (1986) Putative cholinergic interneurons in the optic tectum of the goldfish. Brain Res. (Amsterdam), 370, 365–9.Google Scholar
  131. Uchimayo, H. and I to, H. (1984) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae). Brain Res. (Amsterdam), 298, 4–24.Google Scholar
  132. Vanegas, H. (ed.) (1974) Comparative Neurology of the Optic Tectum. Plenum Press, New York.Google Scholar
  133. Vanegas, H., Amat, J. and Essayag-Millan, E. (1973) Electrophysiological evidence of tectal efferents to the fish eye. Brain Res. (Amsterdam), 54, 309–13.Google Scholar
  134. Vanegas, H., Amat, J. and Essay ag-Millan, E. (1974) Postsynaptic phenomena in optic tectum neurons following optic nerve stimulation in fish. Brain Res. (Amsterdam), 77, 25–38.Google Scholar
  135. Vanegas, H., Essay ag-Millan, E. and Laufer, M. (1971a) Response of the optic tectum to stimulation of the optic nerve in the teleost Eugenes plumieri. Brain Res. (Amsterdam), 31, 107–18.Google Scholar
  136. Vanegas, H., Essay ag-Millan, E. and Laufer, M. (1971b) Laminar profile analysis of the tectal evoked response in the teleost, Eugenes plumieri. Acta cient. venez., 22, 82–5.Google Scholar
  137. Vanegas, H., Williams, B. and Freeman, J.A. (1979) Responses to stimulation of marginal fibres in the teleost optic tectum. Exp. Brain Res., 34, 335–42.Google Scholar
  138. Villani, L., Ciani, F. and Contestabile, A. (1979) Electron microscope histochemistry of acetylcholine-esterase distribution in the optic tectum of teleosts. J. Hirnforsch., 20, 539–42.Google Scholar
  139. Von Holst, E. (1935) Uber den Lichtruckenreflex bei Fischen. Pubbl. Staz. zool. Napoli, 15, 143–58.Google Scholar
  140. Wagner, H.G., MacNichol, E.F. and Wohlbarsht, M.L. (1963) Functional basis for ‘on’-center and ‘off’ center receptive fields in the retina. J. Opt. Soc. Am., 53, 66–70.Google Scholar
  141. Wartzok, D. and Marks, W.B. (1973) Directionally selective visual units recorded in optic tectum of the goldfish. J. Neurophysiol., 36, 588–604.Google Scholar
  142. Wawrzyniak, M. (1962) Chemoarchitektonische Studien am Tectum opticum von Teleostieren unter normalen und experimentelle Bedingungen. Z. Zellforsch. Mikrosk. Anat., 58, 234–41.Google Scholar
  143. Wienrich, M. and Zrenner, E. (1983) Colour opponent mechanisms in cat retinal ganglion cells, in Colour Vision (eds J.D. Mollon and L.T. Sharpe ), Academic Press, London pp. 183–94.Google Scholar
  144. Willis, B. (1987) (pers. comm.).Google Scholar
  145. Witkovsky, P. (1965) The spectral sensitivity of retinal ganglion cells in the carp. Vision Res., 5, 603–14.Google Scholar
  146. Witkovsky, P. (1971) Synapses made by myelinated fibres running to teleost and elasmobranch retinas. J. Comp. Neurol., 142, 205–22.Google Scholar
  147. Yamada, T., Marshak, D., Barsinger, S., Walsh, J., Morley, J. and Stell, W. (1980) Somatostatin-like immunoreactivity in the retina. Proc. Natn. Acad. Sci. USA, 77, 1691–9.Google Scholar
  148. Zenkin, G.M. and Pigarev, I.N. (1969) Detector properties of the ganglion cells of the pike retina. Biophysics, 14, 763–72.Google Scholar
  149. Zottoli, S.J., Rhodes, K.J. and Mufson, E.J. (1987a) Comparison of Achase and ChAT staining patterns in the optic tectum of the goldfish. Brain Behav. Evol., 30, 143–59.Google Scholar
  150. Zottoli, S.J., Hordes, A.R. and Faber, D.S. (1987b) Localization of the optic tectum input to the ventral dendrite of the goldfish Mauthner cell. Brain Res., 401, 113–21.Google Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • Simon D. M. Guthrie

There are no affiliations available

Personalised recommendations