Skip to main content

Stimulus, environment and vision in fishes

  • Chapter

Abstract

The idea that, through evolution, an animal’s visual system becomes adapted so as to maximize the detection and recognition of stimulus objects that are important to its survival is, of course, an old one. This is, however, only one of the factors affecting the efficacy of vision. Animals are themselves stimuli to other animals, and their shape and colour, also modified through evolution, are often such as to greatly reduce the probability of their being detected (camouflage), while on other occasions, such as in aposematic colouring or aggressive and mating displays, they serve to make the animal conspicuous. The environment in which the receptor and stimulus lie is a third factor that has a strong effect on vision, (1) by acting as a transmission channel between stimulus and detector, (2) by providing the illumination, of variable intensity, spectral quality and directional distribution, by which the stimulus is seen, and (3) by also providing the background against which the stimulus appears. The fishes form a particularly good group for the study of the interrelationships and mutual adaptations that occur between stimulus, environment, and detector, because their visual environments are very variable, resulting in their being exposed to a wide variety of visual tasks and having a correspondingly wide range of visual adaptations.

Keywords

  • Modulation Transfer Function
  • Visual Pigment
  • High Spatial Frequency
  • Body Colour
  • Chromatic Aberration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-009-0411-8_15
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-94-009-0411-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, H. (1962) Die Mitschattierung. Experientia, 18, 284–6.

    CrossRef  Google Scholar 

  • Ali, M.A. (ed.) (1978) Sensory Ecology: Review and Perspectives, Plenum Press, New York and London.

    Google Scholar 

  • Ali, M.A. (ed. (1980) Environmental Physiology of Fishes, Plenum Press, New York and London.

    Google Scholar 

  • Appleby, S.J. and Muntz, W.R.A. (1979) Occlusable yellow corneas in Tetraodontidae. J. Exp. Biol., 83, 249–59.

    Google Scholar 

  • Arnott, H.J., Best, A.C.G., Ito, S. and Nicol, J.A.C. (1974) Studies on the eyes of catfishes with special reference to the tapetum lucidum. Proc. R. Soc., B, 186, 13–36.

    CrossRef  Google Scholar 

  • Atkins, W.R.G. and Poole, H.H. (1954) The angular scattering of blue, green, and red light by sea water. Scient. Proc. R. Dubl. Soc., 26, 313–23.

    Google Scholar 

  • Baerends, G.P. and Baerends-van Roon, J.M. (1950) An introduction to the study of cichlid fishes. Behaviour, Supp. 1, 1–243.

    Google Scholar 

  • Bagnana, J.T. and Hadley, M.E. (1973) Chromatophores and Colour Change: A Comparative Physiology of Animal Pigmentation, Prentice-Hall Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Barlow, G.W. (1974) Contrasts in social behaviour between Central American cichlid fishes and coral-reef surgeon fishes. Am. Zool., 14, 9–34.

    Google Scholar 

  • Barlow, G.W. (1976) The Midas cichlid in Nicaragua, in Investigations of the Ichthyofauna of Nicaraguan Lakes (ed. T.B. Thorson ), School of Life Sciences, University of Nebraska, Lincoln, Nebraska.

    Google Scholar 

  • Bayliss, J.R. (1974) The behaviour and ecology of Herotilapia multispinosa (Pisces, Cichlidae). Z. Tierpsychol., 34, 115–46.

    CrossRef  Google Scholar 

  • Bekesy, G. von (1960) Neural inhibitory units of the eye and skin. Quantitative description of contrast phenomena. J. Opt. Soc. Am., 50, 1060–70.

    CrossRef  Google Scholar 

  • Best, A.C.G. and Nicol, J.A.C. (1984) Red pigment epithelium of fish eyes. J. Mar. Biol. Ass. U.K., 64, 909–17.

    CrossRef  Google Scholar 

  • Born, M. and Wolf, E. (1970) Principles of Optics. Pergamon Press, Oxford.

    Google Scholar 

  • Bowling, L.C., Steane, M.S. and Tyler, P.A. (1986) The spectral distribution and attenuation of underwater irradiance in Tasmanian inland waters. Freshwat. Biol., 16, 313–35.

    CrossRef  Google Scholar 

  • Burgess, T.J. (1978) The comparative ecology of two sympatric polychromatic populations of Xererpes fucorum Jordan and Gilbert (Pisces: Pholidae) from the rocky intertidal zone of central California. J. Exp. Mar. Biol. Ecol., 35, 43–58.

    CrossRef  Google Scholar 

  • Clarke, G.L. and Backus, R.H. (1956) Measurements of light penetration in vertical migration and records of luminescence of deep sea animals. Deep Sea Res., 4, 1–14.

    Google Scholar 

  • Clarke, G.L. and Denton, E.J. (1962) Light and animal life, in The Sea, Vol. 1 (ed. M.N. Hill ), John Wiley and Sons, New York, pp. 456–68.

    Google Scholar 

  • Cornsweet, T. (1970) Visual Perception, Academic Press, New York and London.

    Google Scholar 

  • Cott, H.B. (1940) Adaptive Coloration in Animals, Methuen, London.

    Google Scholar 

  • Dahlgren, U. (1916) Production of light by animals. Light production in cephalopods. J. Franklin Inst., 181, 525–56.

    CrossRef  Google Scholar 

  • Denton, E.J. (1956) Recherches sur l’absorption de la lumière par le cristallin des poissons. Bull. Inst. Océanogr. Monaco, 1071, 1–10.

    Google Scholar 

  • Denton, E.J. (1970) On the organization of reflecting surfaces in some marine animals. Phil. Trans. R. Soc., B, 258, 285–313.

    CrossRef  Google Scholar 

  • Denton, E.J. and Nicol, J.A.C. (1964) The choroidal tapeta of some cartilaginous fishes (Chondrichthyes). J. Mar. Biol. Ass. U.K., 44, 219–58.

    CrossRef  Google Scholar 

  • Denton, E.J., Gilpin-Brown, J.B. and Wright, P.G. (1970) On the ‘filters’ in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J. Physiol, Lond., 208, 72–73 P.

    Google Scholar 

  • Denton, E.J., Herring, P.J., Widder, E.A., Latz, M.F. and Case, J.F. (1985) The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc. R. Soc., B, 225.

    Google Scholar 

  • Duntley, S.Q. (1962) Underwater visibility, in The Sea (ed. M.N. Hill ), Interscience, London, pp. 452–5.

    Google Scholar 

  • Duntley, S.Q. (1974) Underwater visibility and photography, in Optical Aspects of Oceanography (eds N.G. Jerlov and E.S. Nillsen ), Academic Press, London, New York, pp. 135–49.

    Google Scholar 

  • Fryer, G. and Lies, T.D. (1972) Cichlid Fishes of the Great Lakes of Africa, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Gazey, B.K. (1970) Visibility and resolution in turbid waters. Underwater Sci. Technol. J., June, 105 - 15.

    Google Scholar 

  • Godfrey, D., Lythgoe, J.N. and Rumball, D.A. (1987) Zebra stripes and tiger stripes: the spatial frequency distribution of the pattern compared to that of the background is significant in display and crypsis. Biol. J. Linn. Soc., 32, 427–33.

    CrossRef  Google Scholar 

  • Guthrie, D.M. (1986) Role of vision in fish behaviour, in The Behaviour of Teleost Fishes (ed. T.J. Pitcher ), Croom Helm, London and Sydney, pp. 75–113.

    Google Scholar 

  • Hailman, J.P. (1977) Optical Signals, Indiana University Press, Bloomington and London.

    Google Scholar 

  • Hass, R. (1976) Sexual selection in Nothobranchius guentheri ( Pisces: Cyprinodontidae). Evolution, 30, 614–22.

    Google Scholar 

  • Helfman, G.S. (1979) Twilight activities of yellow perch Perca flavescens. J. Fish. Res. Board Can., 36, 173–9.

    Google Scholar 

  • Helfman, G.S. (1981) Twilight activities and temporal structure in a freshwater fish community. Can. J. Fish. Aquat. Sci., 38, 1405–20.

    CrossRef  Google Scholar 

  • Herring, P.J. (1977) Bioluminescence of marine organisms. Nature, 267, 788 - 93.

    CrossRef  Google Scholar 

  • Hobson, E.S. (1963) Selective feeding by the grafftopsail pampano, Trachinotus rhodopus (gill), in mixed schools of herring and anchovies in the Gulf of California. Copeia, 4, 595–6.

    CrossRef  Google Scholar 

  • Hobson, E.S. (1972) Activity of Hawaiian reef fishes during the evening and morning transitions between daylight and darkness. Fish. Bull. Nat. Mar. Fish. Serv. US, 70, 715–40.

    Google Scholar 

  • Jerlov, N.G. (1968) Optical Oceanography, Elsevier, Amsterdam.

    Google Scholar 

  • Jerlov, N.G. (1976) Marine Optics, Elsevier, Amsterdam.

    Google Scholar 

  • Kampa, E.M. and Boden, B.P. (1957) Light generation in a sonic scattering layer. Deep Sea Res., 4, 73–92.

    CrossRef  Google Scholar 

  • Kirk, J.T.O. (1980) Spectral absorption properties of natural waters: contribution of the soluble and particulate fractions to light absorption in some inland waters of south-eastern Australia. Aust. J. Mar. Freshwat. Res., 31, 287–96.

    CrossRef  Google Scholar 

  • Kirk, J.T.O. (1981) Estimation of the scattering coefficient of natural waters using underwater irradiance measurements. Aust. J. Mar. Freshwat. Res., 32, 533–9.

    CrossRef  Google Scholar 

  • Kohda, T. and Watanabe, M. (1986) Preference for vertical-striped backgrounds by the Oyanirami Coreoperca kawamebari, a freshwater serranid. Ethology, 72, 185 - 90.

    CrossRef  Google Scholar 

  • Kondrashev, S.L., Gamburtzeva, A.G., Gnjubkina, V.P., Orlov, O.J. and Pham Thi My (1986) Coloration of corneas in fish. A list of species. Vision Res., 26, 287–90.

    CrossRef  Google Scholar 

  • Lawrey, J.V. (1974) Lantern fish compare down welling light and bioluminescence. Nature, Lond., 247, 155–7.

    Google Scholar 

  • Levine, J.S. and MacNichol, E.F. (1979) Visual pigments in teleost fishes: effects of habitat, microhabitat, and behaviour on visual system evolution. Sens. Process., 3, 95–131.

    Google Scholar 

  • Levine, J.S., Lobel, P.S. and MacNichol, E.F. (1980) Visual communication in fishes, in Environmental Physiology of Fishes (ed. M.A. Ali ), Plenum Press, London and New York, pp. 447–75.

    Google Scholar 

  • Loew, E.R. and Lythgoe, J.N. (1978) The ecology of cone pigments in teleost fishes. Vision Res., 18, 715–22.

    CrossRef  Google Scholar 

  • Lowe-McConnell, R.H. (1969) The cichlid fishes of Guyana, South America, with notes on their ecology and breeding behaviour. Zoo. J. Linn. Soc., 48, 255–302.

    CrossRef  Google Scholar 

  • Lythgoe, J.N. (1968a) Visual pigments and visual range underwater. Vision Res., 8, 997–1012.

    CrossRef  Google Scholar 

  • Lythgoe, J.N. (1968b) Red and yellow as conspicuous colours underwater. Underwater Association Report, 51–53.

    Google Scholar 

  • Lythgoe, J.N. (1971) Iridescent corneas in fishes. Nature, Lond., 233, 205–7.

    CrossRef  Google Scholar 

  • Lythgoe, J.N. (1972) The adaptation of visual pigments to the photic environment, in Handbook of Sensory Physiology, Vol. Villi, Photochemistry of Vision (ed. H.J.A. Dartnall ), Springer-Verlag, Berlin, Heidelberg, New York, pp. 566–603.

    Google Scholar 

  • Lythgoe, J.N. (1975) The structure and function of iridescent corneas in fishes. Proc. R. Soc., B, 188, 437–57.

    CrossRef  Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.

    Google Scholar 

  • Lythgoe, J.N. and Northmore, D.P.M. (1973) Colours underwater, in Colour’73, Adam Hilger, London.

    Google Scholar 

  • McFall-Ngai, M., Crescitelli, F., Childress, J. and Horwitz, J. (1986) Patterns of pigmentation in the eye lens of the deep-sea hatchet fish, Argyropelecus affinis Garman. J. Comp. Physiol., A, 159, 791–800.

    CrossRef  Google Scholar 

  • McFarland, W.N. (1975) The visible spectrum during twilight and its implications to vision, in Light as an Ecological Factor: II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne, pp. 249–70.

    Google Scholar 

  • McKaye, K.R. and Barlow, G.W. (1976) Competition between color morphs of the Midas cichlid, Cichlasoma citrinellum, in Lake Jiloä, Nicaragua, in Investigations of the Ichthyofauna of Nicaraguan Lakes (ed. T.B. Thorson ), School of Life Sciences, University of Nebraska, Lincoln, pp. 465–75.

    Google Scholar 

  • McKaye, K.R. and Stauffer, J.R. (1986) Description of a gold cichlid (Teleostei: Cichlidae) from Lake Malawai, Africa. Copeia, (4), 870–75.

    Google Scholar 

  • Mast, S.O. (1916) Changes in shape, color, and pattern in fishes and their bearing on the problems of adaptation and behaviour, with special reference to the flounders, Paralichthys and Ancylopsetta. Bull. Bur. Fish., Wash., 34, 173–238.

    Google Scholar 

  • Meddis, R. (1975) On the function of sleep. Anim. Behav., 23, 676–91.

    CrossRef  Google Scholar 

  • Mertens, L.E. (1970) In-water Photography, Wiley-Interscience, New York, London, Sydney, Toronto.

    Google Scholar 

  • Moreland, J.D. and Lythgoe, J.N. (1968) Yellow corneas in fishes. Vision Res., 8, 1377–80.

    CrossRef  Google Scholar 

  • Müntz, W.R.A. (1973) Yellow filters and the absorption of light by the visual pigments of some Amazonian fishes. Vision Res., 13, 2235–54.

    CrossRef  Google Scholar 

  • Müntz, W.R.A. (1974) Comparative aspects in behavioural studies of vertebrate vision, in The Eye, vol. 6 (eds H. Davson and L.T. Graham ), Academic Press, London, pp. 155–226.

    Google Scholar 

  • Müntz, W.R.A. (1976) On yellow lenses in mesopelagic animals. J. Mar. Biol. Ass. U.K., 56, 963–76.

    CrossRef  Google Scholar 

  • Müntz, W.R.A. (1982) Visual adaptations to different environments in Amazonian fishes. Rev. Can. Biol. Exp,, 41, 35–46.

    Google Scholar 

  • Müntz, W.R.A. (1983) Bioluminescence and vision, in Experimental Biology at Sea (eds A.G. Macdonald and I.G. Priede ), Academic Press, London, pp. 217–38.

    Google Scholar 

  • Müntz, W.R.A. and Mouat, G.S.V. (1984) Annual variations in the visual pigments of brown trout inhabiting lochs providing different light environments. Vision Res., 24, 1575 - 80.

    CrossRef  Google Scholar 

  • Nicol, J.A.C. (1960) Spectral composition of the light of the lantern-fish, Myctophum punctatum. J. Mar. Biol. Ass. U.K., 39, 27–32.

    CrossRef  Google Scholar 

  • Nicol, J.A.C. (1981) Tapeta lucida of vertebrates, in Vertebrate Photoreceptor Optics (eds J.M. Enoch and F.L. Tobey ), Springer-Verlag, Berlin, Heidelberg, New York, pp. 401–31.

    Google Scholar 

  • Nicol, J. A.C. and Arnott, H.J. (1973) Studies on the eyes of gars (Lepisosteidae) with special reference to the tapetum lucidum. Can. J. Zool., 51, 501–8.

    CrossRef  Google Scholar 

  • Nicol, J.A.C., Arnott, H.J. and Best, A.C.G. (1973) Tapeta lucida in bony fishes (Actinopterygii): a survey. Can. J. Zool., 51, 69–81.

    CrossRef  Google Scholar 

  • Northmore, D.P.M. and Dvorak, C.A. (1979) Contrast sensitivity and acuity of the goldfish. Vision Res., 19, 255–61.

    CrossRef  Google Scholar 

  • O’Day, W.T. and Fernandez, H.R. (1976) Vision in the lantern fish Stenobrachius lencopsarus (Myctophidae). Mar. Biol., 37, 187–95.

    CrossRef  Google Scholar 

  • Orlov, O.Y. and Gamburtzeva, A.G. (1976) Changeable coloration of cornea in the fish Hexagrammos octogrammus. Nature, Lond., 263, 405–7.

    CrossRef  Google Scholar 

  • Parker, G.H. (1948) Animal Colour Changes and their Neurohumours. Cambridge University Press, London.

    Google Scholar 

  • Ratliff, F. (1965) Mach Bands: Quantitative Studies on Neural Networks in the Retina, Holden-Day Inc., San Francisco, London, Amsterdam.

    Google Scholar 

  • Semler, D.E. (1971) Some aspects of adaptation in a polymorphism for breeding colours in the threespine stickleback (Gasterosteus aculeatus L.). J. Zool., Lond., 165, 291–302.

    Google Scholar 

  • Shand, J. and Lythgoe, J.N. (1987) Light induced changes in corneal iridescence in fish. Vision Res., 276, 303–5.

    CrossRef  Google Scholar 

  • Somiya, H. (1977) Bacterial bioluminescence in chlorophthalmid deep-sea fish: a possible interrelationship between the light organ and the eyes. Experientia, 33, 906–9.

    CrossRef  Google Scholar 

  • Somiya, H. (1979) ‘Yellow Lens’ eyes and luminous organs of Echiostoma barbatum (Stomiatoidei, Melanostomiatidae). Jap. J. Ichthyol., 25, No. 4, 269–72.

    Google Scholar 

  • Somiya, H. (1980) Fishes with eye shine: functional morphology of guanine type tapetum lucidum. Mar. Ecol. Progr. Report, 2, 9–26.

    CrossRef  Google Scholar 

  • Somiya, H. (1982) ‘Yellow lens’ eyes of a stomiatoid deep-sea fish, Malacosteus niger. Proc. R. Soc., B, 215, 481–9.

    Google Scholar 

  • Somiya, H. and Tamura, T. (1971) The eye of ‘yellow lens’ fish Chlorophthalmus albatrossis. Bull. Japan. Soc. Scient. Fish., 37, 840–5.

    Google Scholar 

  • Sroczynsky, S. (1981) Optical system of the eye of the ruff (Acerina cernua L.). Zool. Jb. Abt. allgemeine Zool. Physiol. Tiere, 85, 316–42.

    Google Scholar 

  • Stepien, C.A. (1986) Regulation of color morphic patterns in the giant kelpfish, Heterostichus rostratus Girard: genetic versus environmental factors. J. Exp. Mar. Biol. Ecol., 100, 181–208.

    CrossRef  Google Scholar 

  • Stepien, C.A. (1987) Color pattern and habitat differences between male, female and juvenile giant kelpfish (Blennioidei: Clinidae). Bull. Mar. Sci., 41, 45–58.

    Google Scholar 

  • Tyler, J.E. (1960) Radiance distribution as a function of depth in an underwater environment. Bull. Scripps Inst. Oceanogr., 7, 363–412.

    Google Scholar 

  • Tyler, J.E. (1965) In situ spectroscopy in ocean and lake waters. J. Opt. Soc. Am., 55, 800–805.

    CrossRef  Google Scholar 

  • Ward, F. (1919) Animal Life Underwater, Cassell, London.

    Google Scholar 

  • Wells, W.H. (1969) Loss of resolution in water as a result of multiple small angle scattering. J. Opt. Soc. Am., 59, 686–91.

    CrossRef  Google Scholar 

  • Wright, W.D. (1964) The Measurement of Colour, Hilger and Watts, London.

    Google Scholar 

  • Young, R.E. (1973) Information feedback from photophores and ventral counter- shading in mid-water squid. Pacif. Sci., 29, 211–18.

    Google Scholar 

  • Young, R.E., Roper, C.F.E. and Walters, J.F. (1979) Eyes and extraocular photoreceptors in midwater cephalopods and fishes: their roles in detecting downwelling light for counterillumination. Mar. Biol., 51, 371–80.

    CrossRef  Google Scholar 

  • Zigman, S. (1971) Eye lens color: formation and function. Science, N.Y., 171, 807–9.

    CrossRef  Google Scholar 

  • Zigman, S. and Gilbert, P.W. (1978) Lens colour in sharks. Expl Eye Res., 26, 227–31.

    CrossRef  Google Scholar 

  • Zyznar, E.S. (1975) Theoretical considerations about tapeta lucida, in Vision in Fishes (ed. M.A. Ali ), Plenum Press, New York and London, pp. 305–12.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Muntz, W.R.A. (1990). Stimulus, environment and vision in fishes. In: Douglas, R., Djamgoz, M. (eds) The Visual System of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0411-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0411-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6672-3

  • Online ISBN: 978-94-009-0411-8

  • eBook Packages: Springer Book Archive