Haplochromis burtoni: a case study

  • Russell D. Fernald


In species where vision is an important sensory input, the eyes typically have a spectrum of specialized adaptations which permit vision under a wide variety of circumstances. These evolutionary modifications exist at all levels of organization and consequently have long been the object of scientific inquiry. The selective pressures responsible for production of specialized ocular adaptations arise both from the fundamental physical laws governing light and from the time course of its natural variation, both daily and yearly. For example, the diurnal variation in light intensity, which can be 6–7 orders of magnitude, is no obstacle to our use of the visual system because of adaptive modifcations from the gross structure of the eye to the genetic control of biochemical processes responsible for phototransduction. Although it is exciting to figure out how such adaptations work, a further challenge lies in discovering the selective forces which caused these changes in the course of evolution. The analysis of fish vision holds promise for this enterprise because of the enormous variety of species and because of their specialized visual needs.


Outer Nuclear Layer Territorial Male Retinal Tissue Cichlid Fish Cone Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E.E. and Fernald, R.D. (1985) Scotopic visual threshold in the African cichlid fish, Haplochromis burtoni. J. Comp. Physiol., 157, 247–53.CrossRefGoogle Scholar
  2. Baburina, E.A. (1955) The eye of the retina in the Caspian shad. Dokl. Akad. Nauk. SSSR., 100, 1167–70.Google Scholar
  3. Baerends, G.P. and Baerends-Van Roon, J.M. (1950) An introduction to the ethology of cichlid fishes. Behaviour (Supp.), I, 1–243.Google Scholar
  4. Baerends, G.P., Bennema, B.E. and Vogelzang, A.A. (1960) Ueber die Änderung der Sehscharfe mit dem Wachstum bei Aequidens portalegrensis (Hensel) (Pisces, Cichlidae). Zool. Jb. Abt. allgemeine Syst. Ökol., 88, 67–78.Google Scholar
  5. Carter-Dawson, L.D. and LaVail, M.M. (1979) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J. Comp. Neurol., 188, 263–72.CrossRefGoogle Scholar
  6. Davis, M.R. and Fernald, R.D. (1986) Social environment modulates the development of a forebrain peptidergic nucleus in the cichlid fish, Haplochromis burtoni. Soc. Neurosci. Abstr., 11, 1283.Google Scholar
  7. Easter, S.S., Johns, P.R. and Baumann, L.R. (1977) Growth of the adult goldfish eye. I. Optics. Vision Res., 16, 469–76.CrossRefGoogle Scholar
  8. Eigenmann, C.H. and Shafer, G.D. (1900) The mosaic of single and twin cones in the retina of fishes. Am. Nat., 34, 109–18.CrossRefGoogle Scholar
  9. Fernald, R.D. (1975) Fast body turns in a cichlid fish. Nature, Lond., 258, 228–9.CrossRefGoogle Scholar
  10. Fernald, R.D. (1977) Quantitative behavioral observations of Haplochromis burtoni under semi-natural conditions. Anim. Behav., 25, 643–53.CrossRefGoogle Scholar
  11. Fernald, R.D. (1980a) Optic nerve distension in a cichlid fish. Vision Res., 20, 1015–19.CrossRefGoogle Scholar
  12. Fernald, R.D. (1980b) Responses of male Haplochromis burtoni reared in isolation to models of conspecifics. Z. Tierpsychol., 54, 85–93.CrossRefGoogle Scholar
  13. Fernald, R.D. (1981a) Visual field and retinal projections in the African cichlid fish, Haplochromis burtoni. Neurosci. Abstr., 7, 844.Google Scholar
  14. Fernald, R.D. (1981b) Chromatic organization of the cichlid fish retina. Vision Res., 20, 1749–53.CrossRefGoogle Scholar
  15. Fernald, R.D. (1982) Retinal projections in the African cichlid fish, Haplochromis burtoni. J. Comp. Neurol, 206, 379–89.CrossRefGoogle Scholar
  16. Fernald, R.D. (1983) Neural basis of visual pattern recognition in fish, in Advances in Vertebrate Neuroethology (eds J.-P. Ewert, R.R. Capranica and D.J. Ingle ), Plenum, N.Y., pp. 569–80.Google Scholar
  17. Fernald, R.D. (1984) Vision and behaviour in an African cichlid fish. Am. Scient., 72 (1), 58–65.Google Scholar
  18. Fernald, R.D. (1985a) Growth of the teleost eye: novel solutions to complex constraints. Env. Biol. Fishes, 13, 113–23.CrossRefGoogle Scholar
  19. Fernald, R.D. (1985b) Eye movements in the African cichlid fish, Haplochromis burtoni. J. Comp. Physiol., 156, 199–208.CrossRefGoogle Scholar
  20. Fernald, R.D. (1988) Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga ), Springer- Verlag, Berlin, pp. 435 - 466.Google Scholar
  21. Fernald, R.D. (1989) Retinal rod neurogenesis. Development of the Vertebrate Retina (eds B.L. Finlay and D.R. Sengelaub ), Plenum, N.Y., pp. 31–42.Google Scholar
  22. Fernald, R.D. and Hirata, N. (1975) Non-intentional sound production in a cichlid fish (Haplochromis burtoni, Gunther). Experientia, 31, 299–300.CrossRefGoogle Scholar
  23. Fernald, R.D. and Hirata, N. (1977a) Field study of Haplochromis burtoni: habitats and co-habitants. Env. Biol, of Fishes, 2, 299–308.CrossRefGoogle Scholar
  24. Fernald, R.D. and Hirata, N. (1977b) Field study of Haplochromis burtoni: quantitative behavioral observations. Anim. Behav., 25, 964–75.CrossRefGoogle Scholar
  25. Fernald, R.D. and Hirata, N. (1979) The ontogeny of social behavior and body coloration in the African cichlid fish, Haplochromis burtoni. Z. Tierpsychol., 50, 180–87.Google Scholar
  26. Fernald, R.D. and Johns, P. (1980) Retinal structure and growth in the cichlid fish, Haplochromis burtoni. Invest. Ophthalmol. Vis. Sci., 69 (Supp.).Google Scholar
  27. Fernald, R.D. and Scholes, J. (1985) A zone exclusive rod neurogenesis in the teleost retina. Soc. Neurosci. Abstr., 11, 1063.Google Scholar
  28. Fernald, R.D. and Scholes, J. (1989) Retinal neurogenesis in teleosts: a-second germinal zone. Submitted.Google Scholar
  29. Fernald, R.D. and Wright, S.E. (1983) Maintenance of optical quality during crystalline lens growth. Nature, Lond., 301, 618–20.CrossRefGoogle Scholar
  30. Fernald, R.D. and Wright, S.E. (1985a) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: optics. Vision Res., 25, 155–61.CrossRefGoogle Scholar
  31. Fernald, R.D. and Wright, S.E. (1985b) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: accommodation. Vision Res., 25, 163–70.CrossRefGoogle Scholar
  32. Fernald, R.D., McDonald, R. and Korenbrot, J. (1987) Light-dark cycle of opsin mRNA production in toads and fish. Invest. Ophthalmol. Vis. Sci., 28 (3), 184.Google Scholar
  33. Fraley, N.B. and Fernald, R.D. (1982) Social control of development rate in the African cichlid fish, Haplochromis burtoni. Z. Tierpsychol., 60, 66–82.Google Scholar
  34. Fryer, G. and lies, T.D. (1972) The Cichlid Fishes of the Great Lakes of Africa, Oliver and Boyd, Edinburgh.Google Scholar
  35. Greenwood, P.H. (1981) Species flocks and explosive evolution, in Chance, Change and Challenge - The Evolving Biosphere (eds P.H. Greenwood and P.L. Forey ), Cambridge University Press and British Museum, London, pp. 61–74.Google Scholar
  36. Hairston, N.G., Li, K.T. and Easter, S.S. (1982) Fish vision and the detection of planktonic prey. Science, 218, 1240–42.CrossRefGoogle Scholar
  37. Heiligenberg, W. and Kramer, U. (1972) Aggressiveness as a function of external stimulation. J. Comp. Physiol., 77, 332–40.CrossRefGoogle Scholar
  38. Heiligenberg, W., Kramer, U. and Schultz, V. (1972) The angular orientation of the black eye-bar in Haplochromis burtoni ( Cichlidae, Pisces) and its relevance to aggressivity. Z. vergl. Physiol., 76, 168–76.CrossRefGoogle Scholar
  39. Heine, C. (1901) Demonstration des Zapfenmosaiks der Menschlichen Fovea. Dtsch. Ophthal, ges. Ber., 29, 265–6.Google Scholar
  40. Johns, P.R. (1976) Synaptic connections must change in the adult goldfish retina. Neurosci. Abstr. 6, 826.Google Scholar
  41. Johns, P.R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol., 176, 343–57.Google Scholar
  42. Johns, P.R. and Fernald, R.D. (1981) Genesis of rods in teleost fish retina. Nature, Lond., 293, 141–2.CrossRefGoogle Scholar
  43. Kahmann, H. (1936) Uber das Foveale Sehen der Wirbeltiere. I. Uber die Fovea Centralis und die Fovea Lateralis bei Einigen Wirbeltieren. Albrecht von Graefes Arch. Ophthal., 135, 265–76.CrossRefGoogle Scholar
  44. Kirchshofer, R. (1953) Aktionssystem des Maulbruters Haplochromis desfontainesii. Z. Tierpsychol., 10, 297–318.Google Scholar
  45. Leong, C.Y. (1969) Quantitative effect of releasers in the attack readiness of the fish Haplochromis burtoni. Z. vergl. Physiol., 65, 29–50.CrossRefGoogle Scholar
  46. Liem, K.F. and Osse, J.W.M. (1975) Biological versatility, evolution and food resources, exploitation in African cichlid fishes. Am. Zool., 15, 427–54.Google Scholar
  47. Lyall, A.H. (1957) The growth of the trout retina. Q. J. Microsc. Sci., 98, 101–10.Google Scholar
  48. Marc, R.E. and Sperling, H.G. (1976) Color receptor identities of goldfish cones. Science N.Y., 191, 487–9.CrossRefGoogle Scholar
  49. Meyer, R.L. (1978) Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Expl. Neurol., 59, 99–111.CrossRefGoogle Scholar
  50. Müller, H. (1952) Bau und Wachstum der Netzhaut des Guppy (.Lebistes reticulatus). Zool. Jb. Abt. allgemeine Zool. Physiol., 63, 275–324.Google Scholar
  51. Muske, L.E. (1983) To bar or not bar: control of a social signal, PhD diss., University of Oregon.Google Scholar
  52. Muske, L.E. and Fernald, R.D. (1983) Differential sensitivity of adrenergic melanophore receptors in two color morphs of cichlid fish, Haplochromis burtoni. Neurosci. Abstr., 9, 1120.Google Scholar
  53. Muske, L. and Fernald, R.D. (1987a) Control of a teleost social signal: neural basis for differential expression of a color pattern. J. Comp. Physiol., 160, 89–97.CrossRefGoogle Scholar
  54. Muske, L. and Fernald, R.D. (1987b) Control of a teleost social signal: anatomical and physiological specializations of chromatophores. J. Comp. Physiol., 160, 99–107.CrossRefGoogle Scholar
  55. Poll, M. (1956) Poissons Cichlidae. Result. Scient. Explor. Hydrobiol. Lake Tanganika (1946-47), Inst. Royal Sei. Nat. Belgique, Brussels, 3, Fasc. 5b, 1–619.Google Scholar
  56. Powers, M.K. and Bassi, C.J. (1981) Absolute visual threshold is determined by the proportion of stimulated rods in the growing goldfish retina. Neurosci. Abstr., 7, 541.Google Scholar
  57. Regan, C.T. (1920) The classification of the fishes of the family Cichlidae. I. The Tanganikan genera. Ann. Mag. Nat. Hist., 5, 33–53.Google Scholar
  58. Sandy, J.M. and Blaxter, J.H.S. (1980) A study of retinal development in larval herring and sole. J. Mar. Biol. Ass., U.K., 60, 59–71.CrossRefGoogle Scholar
  59. Scholes, J.H. (1976) Neuronal connections and cellular arrangement in the fish retina, in Neural Principles in Vision (eds F. Zettler and R. Weiler ), Springer-Verlag, Berlin, pp. 63–93.Google Scholar
  60. Schultze, M. (1986) Zur Anatomie und Physiologie der Retina. Arch, mikrosk. Anat. EntwMech., 2, 165–74.Google Scholar
  61. Wagner, H.J. (1974) Development of the retina of Nannacara anomala, with reference to regional variations in differentiation. Z. Morph. Tiere, 79, 113–31.CrossRefGoogle Scholar
  62. Wickler, W. (1962) ‘Egg dummies’ as natural releasers in mouth-breeding cichlids. Nature, Lond., 194, 1092–3.Google Scholar
  63. Wickler, W. (1965) Signal value of the genital tassel in the male Tilapia macrochir Blgr. (Pisces: Cichlidae). Nature, Lond., 208, 595–6.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • Russell D. Fernald

There are no affiliations available

Personalised recommendations