Development of the visual system

  • Maureen K. Powers
  • Pamela A. Raymond


Many aspects of the retinal structure and visual function of fishes are typical of all vertebrates. Colour vision, based on the presence of multiple primary cone pigments (Marks, 1965) and on the colour-opponent organization of retinal ganglion cells (Wagner et al., 1960), is perhaps the best known example. While research on such typical properties has contributed greatly to our understanding of the neural basis of vertebrate vision, other properties deserve equal interest because they are not typical. The development of the visual system is an example of this kind of property.


Retinal Ganglion Cell Constant Light Optic Tectum Neural Retina Visual Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M.A. (1959) The ocular structure, retinomotor and photobehavioral responses of juvenile Pacific salmon. Can. J. Zool., 37, 965–96.CrossRefGoogle Scholar
  2. Ali, M.A. (1964) Stretching of the retina during growth of salmon (Salmo salar). Growth 28, 83–98.Google Scholar
  3. Bassi, C.J. (1985) Rhythms in the goldfish retina: rod outer segment shedding and visual sensitivity. PhD thesis, Vanderbilt University, Nashville, Tennessee.Google Scholar
  4. Bassi, C.J. and Powers, M.K. (1986) Lengthened rod outer segments correlate with increased visual sensitivity. Invest. Ophthalmol. Vis. Sci., 27 (Supp.), 236.Google Scholar
  5. Blaxter, J.H.S. (1968) Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol., 48, 39–53.Google Scholar
  6. Blaxter, J.H.S. (1969) Visual thresholds and spectral sensitivity of flatfish larvae. J. Exp. Biol, 51, 221–30.Google Scholar
  7. Blaxter, J.H.S. (1975) The eyes of larval fish, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum Press, New York, pp. 427–44.Google Scholar
  8. Blaxter, J.H.S. and Jones, M.P. (1967) The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. U.K., 47, 677–97.CrossRefGoogle Scholar
  9. Bowmaker, J.K. and Kunz, Y.W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes. Vision Res., 27, 2101–8.CrossRefGoogle Scholar
  10. Branchek, T. (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio. II. Function. J. Comp. Neurol., 224, 116–22.CrossRefGoogle Scholar
  11. Branchek, T. and BreMiller, R. (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. J. Comp. Neurol., 224, 107–15.CrossRefGoogle Scholar
  12. Brindley, G.S. (1970) Physiology of the Retina and Visual Pathway. Williams and Wilkins, Baltimore, Maryland.Google Scholar
  13. Carew, T.J. and Sahley, C.L. (1986) Invertebrate learning and memory from behaviour to molecules. Ann. Rev. Neurosci., 9, 435–87.CrossRefGoogle Scholar
  14. Chen, D.-M. and Powers, M.K. (1988) Development of spectral sensitivity in goldfish. Soc. Neurosci. Abstr., 14, 422.Google Scholar
  15. Clark, D. (1981) Visual responses in developing zebrafish, PhD thesis, University of Oregon, Eugene, Oregon.Google Scholar
  16. Cotman, C.W. and Monaghan, D.T. (1988) Excitation amino acid neurotransmission. NMDA receptors and Hebb-type synaptic plasticity. Am. Rev. Neurosci., 11, 61–80.CrossRefGoogle Scholar
  17. Coulombre, A.J. (1956) The role of intraocular pressure in the development of the chick eye. I. Control of eye size. J. Exp. Biol., 133, 211–25.Google Scholar
  18. Douglas, R.H. (1986) Photopic spectral sensitivity of a teleost fish: the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J. Comp. Physiol., 159, 415–21.CrossRefGoogle Scholar
  19. Douglas, R.H. (1989) The spectral transmission of the lens and cornea of the brown trout (Salmo trutta) and goldfish (Carassius auratus) - effect of age and implications for ultraviolet vision. Vision Res., 29, 861–9.CrossRefGoogle Scholar
  20. Easter, S.S., jun. (1983) Postnatal neurogenesis and changing connections. Trends Neurosci., 6, 53–6.CrossRefGoogle Scholar
  21. Easter, S.S., jun. (1985) The continuous formation of the retinotectal map in goldfish, with special attention to the role of axonal pathway, in Molecular Bases of Neural Development (eds G.M. Edelman, W.E. Gall and W.M. Cowan ), Neuroscience Research Foundation, Inc., Boston, Mass., pp. 429–52.Google Scholar
  22. Easter, S.S., jun., Johns, P.A. (Raymond) and Baumann, L.R. (1977) Growth of the adult goldfish eye. I. Optics. Vision Res., 17, 469–76.Google Scholar
  23. Easter, S.S., jun., Purves, D., Rakic, P. and Spitzer, N.C. (1985) The changing face of neural plasticity. Science, N.Y., 230, 507–11.CrossRefGoogle Scholar
  24. Easter, S.S., jun. and Hitchcock, P.F. (1986) The myopic eye of the Black Moor goldfish. Vision Res., 26, 1831–3.CrossRefGoogle Scholar
  25. Easter, S.S., jun. and Malinoski, C. (1986) Regeneration of the goldfish retina. Invest. Ophthalmol. Vis. Sci., 27 (Suppl.), 206.Google Scholar
  26. Falzett, M., Nussdorf, J.D. and Powers, M.K. (1988) Responsivity and absolute sensitivity of retinal ganglion cells in goldfish of different sizes, when measured under ‘psychophysical’ conditions. Vision Res., 28, 223–37.CrossRefGoogle Scholar
  27. Fernald, R.D. (1985) Growth of the teleost eye: novel solutions to complex constraints. Env. Biol. Fishes, 13, 113–23.CrossRefGoogle Scholar
  28. Fernald, R.D. and Wright, S.E. (1985a) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: Optics. Vision Res., 25, 155–61.CrossRefGoogle Scholar
  29. Fernald, R.D. and Wright, S.E. (1985a) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: Accommodation. Vision Res., 25, 163–70.CrossRefGoogle Scholar
  30. Fisher, L.J. and Easter, S.S., jun. (1979) Retinal synaptic arrays: continuing development in the adult goldfish. J. Comp. Neurol., 185, 373–80.CrossRefGoogle Scholar
  31. Griin, G. (1975) Structural basis of the functional development of the retina in the cichlid Tilapia leucostica. J. Embryol. Exp. Morph., 33, 243–57.Google Scholar
  32. Hairston, N.G., Li, K.T. and Easter, S.S., jun. (1982) Fish vision and the detection of planktonic prey. Science, N.Y., 218, 1240–42.CrossRefGoogle Scholar
  33. Hawryshyn, C.W. and Beauchamp, R.D. (1985) Ultraviolet photosensitivity in goldfish: an independent U.V. retinal mechanism. Visions Res., 25, 11–20.Google Scholar
  34. Hawryshyn, C.W., Arnold, M.G., Chiasson, D.J. and Martin, P.C. (1987) Developmental changes in ultraviolet photosensitivity in rainbow trout. Soc. Neurosci. Abstr., 13, 1298.Google Scholar
  35. Hitchcock, P.F. (1987) Constant dendritic coverage by ganglion cells with growth of the goldfish’s retina. Vision Res., 27, 17–22.CrossRefGoogle Scholar
  36. Hitchcock, P.F. and Easter, S.S., jun. (1986) Retinal ganglion cells in goldfish: a qualitative classification into four morphological types, and a quantitative study of the development of one of them. J. Neurosci., 6, 1037–50.Google Scholar
  37. Hollyfield, J.G. (1972) Histogenesis of the retina of the killifish Fundulus heteroclitus. J. Comp. Neurol., 144, 373–88.CrossRefGoogle Scholar
  38. Johns, P.A. (Raymond) (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol., 176, 343–58.Google Scholar
  39. Johns, P.A. (Raymond) (1982) The formation of photoreceptors in the growing retinas of larval and adult goldfish. J. Neurosci., 2, 178–98.Google Scholar
  40. Johns, P.A. (Raymond) and Easter, S.S., jun. (1977) Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol., 176, 331–42.CrossRefGoogle Scholar
  41. Johns, P.A. (Raymond) and Fernald, R.D. (1981) Genesis of rods in teleost fish retina. Nature, Lond., 293, 141–2.CrossRefGoogle Scholar
  42. Kastner, R. and Wolburg, H. (1982) Functional regeneration of the visual system in teleosts. Comparative investigations after optic nerve crush and damage of the retina. Z. Naturforschung, 37, 1274–80.Google Scholar
  43. Kirsche, W. and Kirsche, K. (1961) Experimented Untersuchungen zur Frage der Regeneration und Funktion des Tectum Opticum von Carassius carassius L. Z. Mikrosk.-Anat. Forsch., 67, 140–82.Google Scholar
  44. Kljavin, I.J. (1987) Early development of the photoreceptors in the ventral retina of the zebrafish embryo. J. Comp. Neurol., 260, 461–71.CrossRefGoogle Scholar
  45. Kock, J.-H. (1982) Neuronal addition and retinal expansion during growth of the crucian carp eye. J. Comp. Neurol., 209, 275–86.CrossRefGoogle Scholar
  46. Kock, J.-H. and Reuter, T. (1978) Retinal ganglion cells in the crucian carp (Carassius carassius). I. Size and number of somata in eyes of different size. J. Comp. Neurol., 179, 535–48.CrossRefGoogle Scholar
  47. Kock, J.-H. and Stell, W.K. (1985) Formation of new rod photoreceptor synapses onto differentiated bipolar cells in goldfish retina. Anat. Rec., 211, 69–74.CrossRefGoogle Scholar
  48. Kunz, Y.W., Ennis, S. and Wise, C. (1983) Ontogeny of the photoreceptors in the embryonic retina of the viviparous guppy, Poecilia reticulata P. (Teleostei). Cell Tissue Res., 230, 469–86.CrossRefGoogle Scholar
  49. Kurz-Isler, G. and Wolburg, H. (1982) Morphological study on the regeneration of the retina in the rainbow trout after ouabain-induced damage: evidence of dedifferentiation of photoreceptor cells. Cell Tissue Res., 225, 165–78.CrossRefGoogle Scholar
  50. Lanum, J. (1978) The damaging effects of light on the retina: empirical findings, theoretical and practical implications. Surv. Ophthal., 22, 221–49.CrossRefGoogle Scholar
  51. Lombardo, F. (1968) The regeneration of the retina in the adult teleost (in Italian). Atti. Accad. maz. Lincei Rc. Scienze Fisiche, Matematiche Naturali, 45, 631–5.Google Scholar
  52. Lombardo, F. (1972) Course and localization of mitoses during the regeneration of the retina of an adult teleost (in Italian). Atti. Accad. maz. Lincei Rc. Scienze Fisiche, Matematiche Naturali, 53, 323–7.Google Scholar
  53. Lyall, A.H. (1957) The growth of the trout retina. Q. J. Microsc. Sci., 98, 101 - 10.Google Scholar
  54. Macy, A. and Easter, S.S., jun. (1981) Growth-related changes in the size of receptive field centers of retinal ganglion cells in goldfish. Vision Res., 21, 1497–1504.CrossRefGoogle Scholar
  55. Maier, M. and Wolburg, H. (1979) Regeneration of the goldfish retina after exposure to different doses of ouabain. Cell Tissue Res., 202, 99–118.CrossRefGoogle Scholar
  56. Mann, I. (1969) The Development of the Human Eye, Grun and Stalton, NY.Google Scholar
  57. Marks, W.B. (1965) Visual pigments of single goldfish cones. J. Physiol Lond., 178, 14–32.Google Scholar
  58. Marotte, L.R. (1980) Goldfish retinotectal system: continuing development and synaptogenesis. J. Comp. Neurol., 193, 319–34.Google Scholar
  59. Marotte, L.R., Wye-Dvorak, J. and Mark, R.F. (1979) Retinotectal reorganization in goldfish: II. Effects of partial tectal ablation and constant light on the retina. Neuroscience, 4, 803–10.CrossRefGoogle Scholar
  60. Meer, H.J. Van der and Anker, G.C. (1986) The influence of light deprivation on the development of the eye and retina in the cichlid Sarotherodon mossambicus (Teleostei). Neth. J. Zool., 36, 480–98.CrossRefGoogle Scholar
  61. Meyer, R.L. (1978) Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol., 59, 99–111.CrossRefGoogle Scholar
  62. Müller, H. (1952) Bau und Wachtstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jb. Abt. allgemeine Zool. Physiol., 63, 275–324.Google Scholar
  63. Negishi, K., Teranishi, T. and Kato, S. (1982) Growth zone of the juvenile goldfish retina revealed by fluorescent flat mounts. J. Neurosci. Res., 7, 321–30.CrossRefGoogle Scholar
  64. Negishi, K., Teranishi, T., Kato, S. and Nakamura, Y. (1987) Paradoxical induction of dopaminergic cells following intravitreal injection of high doses of 6-hydroxy- dopamine in juvenile carp retina. Developmental Brain Res., 33, 67–9.CrossRefGoogle Scholar
  65. Negishi, K., Teranishi, T., Kato, S. and Nakamura, Y. (1988) Immunohistochemical and autoradiographic studies on retinal regeneration in teleost fish. Neurosci. Res., 58, 543–57.Google Scholar
  66. Northcutt, R.G. (1983) Evolution of the optic tectum in ray-finned fishes, in Fish Neurobiology, Vol. 2, Higher Brain Areas and Functions (eds R.E. Davis and R.G. Northcutt ), University of Michigan Press, Ann Arbor, Michigan, pp. 1–42.Google Scholar
  67. Penn, J.S. (1985) Effects of continuous light on the retina of a fish Notemigonus crysoleucas. J. Comp. Neurol., 238, 121–7.CrossRefGoogle Scholar
  68. Pickett-Seltner, R.L., Sivak, J.G. and Pasternak, J.J. (1988) Experimentally induced myopia in chicks: morphometric and biochemical analysis during the first 14 days after hatching. Vision Res., 28, 323–8.CrossRefGoogle Scholar
  69. Powers, M.K. and Easter, S.S., jun. (1978) Absolute visual sensitivity of the goldfish. Vision Res., 18, 1137–47.CrossRefGoogle Scholar
  70. Powers, M.K., Bassi, C.J. and Raymond P.A. (1987) Visual sensitivity of adult goldfish after 3 mo. constant light. Soc. Neurosci. Abstr., 13, 1300.Google Scholar
  71. Powers, M.K., Bassi, C.J. and Raymond, P.A. (1988a) Lighting conditions and retinal development in goldfish: absolute visual sensitivity. Invest. Ophthalmol. Vis. Sci., 29, 37–43.Google Scholar
  72. Powers, M.K., Bassi, C.J., Rone, L.A. and Raymond, P.A. (1988b) Visual detection by the rod system in goldfish of different sizes. Vision Res., 28, 211–21.CrossRefGoogle Scholar
  73. Rahmann, H. and Jeserich, G. (1978) Quantitative morphogenetic investigation on fine structural changes in the optic tectum of the rainbow trout (.Salmo gairdneri) during ontogenesis. Wilhelm Roux Arch. EntwMech. Org., 184, 83–94.CrossRefGoogle Scholar
  74. Rahmann, H., Jeserich, G. and Feutzius, I. (1978) Ontogeny of visual acuity of rainbow trout under normal conditions and light deprivation. Behaviour, 68, 314–22.Google Scholar
  75. Raymond, P.A. (1985a) The unique origin of rod photoreceptors in the teleost retina. Trends Neurosci., 8, 12–17.CrossRefGoogle Scholar
  76. Raymond, P.A. (1985b) Cytodifferentiation of photoreceptors in larval goldfish: delayed maturation of rods. J. Comp. Neurol., 236, 90–105.CrossRefGoogle Scholar
  77. Raymond, P.A. (1986) Movement of retinal terminals in goldfish optic tectum predicted by analysis of neuronal proliferation. J. Neurosci., 6, 2479–88.Google Scholar
  78. Raymond, P.A. and Easter, S.S., jun. (1983) Postembryonic growth of the optic tectum. I. Location of germinal cells and numbers of neurons produced. J. Neurosci., 3, 1077–91.Google Scholar
  79. Raymond, P.A. and Rivlin, P.K. (1987) Germinal cells in the goldfish retina that produce rod photoreceptors. Developmental Biol., 122, 120–38.CrossRefGoogle Scholar
  80. Raymond, P.A., Bassi, C.J. and Powers, M.K. (1988a) Lighting conditions and retinal development in goldfish. Photoreceptor number and structure. Invest. Ophthalmol. Vis. Sci., 29, 27–36.Google Scholar
  81. Raymond, P.A., Easter, S.S., jun., Burnham, J.A. and Powers, M.K. (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J. Neurosci., 3, 1092–9.Google Scholar
  82. Raymond, P.A., Hitchcock, P.F. and Palopoli, M.J. (1988b) Neuronal cell proliferation and ocular enlargement in Black Moor goldfish. J. Comp. Neurol., 276, 231–8.CrossRefGoogle Scholar
  83. Raymond, P.A., Reifler, M.J. and Rivlin, P.K. (1988c) Goldfish retina regenerates from precursor cells that produce only rods during normal growth. J. Neurobiol., 19, 431–63.CrossRefGoogle Scholar
  84. Raymond, P.A., Spilman, D., Hill, R. and Bahn, C. (1984) The telescopic eyes of Black Moor goldfish: elevated intraocular pressure and altered aqueous outflow pathways. Invest. Ophthalmol. Vis. Sci., 25 (Supp.), 282.Google Scholar
  85. Richter, W. and Kranz, D. (1977) Ueber die Bedeutung der Zellproliferation fuer die Hirnregeneration bei niederen Vertebraten. Autoradiographische Untersuchungen. Verh. Anat. Ges., Jena., 71, 439–45.Google Scholar
  86. Rusoff, A.C. and Easter, S.S., jun. (1980) Order in the optic nerve of goldfish. Science, N.Y., 208, 311–12.CrossRefGoogle Scholar
  87. Sandy, J.M. and Blaxter, J.H.S. (1980) A study of retinal development in larval herring and sole. J. Mar. Biol. Ass. U.K., 60, 59–71.CrossRefGoogle Scholar
  88. Scholes, J.H. (1976) Neuronal connections and cellular arrangements in the fish retina, in Neural Principles in Vision (eds F. Zettler and R. Weiler) Springer-Verlag, New York, pp. 63–93.Google Scholar
  89. Schwassmann, H.O. (1975) Refractive state, accommodation, and resolving power of the fish eye, in Vision in Fishes (ed. M.A. Ali ), Plenum, New York, pp. 279–88.Google Scholar
  90. Segaar, J. (1965) Behavioral aspects of degeneration and regeneration in fish brain: a comparison with higher vertebrates, in Degeneration Patterns in the Nervous System, Progress in Brain Research, Vol. 14 (eds M. Singer and J.P. Schade), pp. 143–231.CrossRefGoogle Scholar
  91. Sharma, S.C. and Ungar, F. (1980) Histogenesis of the goldfish retina. J. Comp. Neurol., 191, 373–82.CrossRefGoogle Scholar
  92. Stephenson, J.A. and Yoon, M.G. (1978) Regeneration of optic nerve fibers enhances cell proliferation in the goldfish optic tectum. Brain Res., 153, 345–51.CrossRefGoogle Scholar
  93. Stephenson, J.A. and Yoon, M.G. (1981) Mitosis of radial glial cells in the optic tectum of adult goldfish. J. Neurosci., 1, 862–75.Google Scholar
  94. Stuermer, C.A.O. (1988) Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J. Neurosci., 8, 4513–30.Google Scholar
  95. Stuermer, C.A.O. and Raymond, P.A. (1989) The developing retinotectal projection in larval goldfish. J. Comp. Neurol., 281, 630–40.CrossRefGoogle Scholar
  96. Tamura, T. (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. Scient. Fish., 22, 536–57.Google Scholar
  97. Van der Meer: see Meer.Google Scholar
  98. Vanegas, H. (1983) Organization and physiology of the teleostean optic tectum, in Fish Neurobiology, Vol. 2, Higher Brain Areas and Functions (eds R.E. Davis and R.G. Northcutt ), University of Michigan Press, Ann Arbor, Mich., pp. 43–90.Google Scholar
  99. Wagner, H.G., MacNichol, E.F., jun. and Wolbarsht, M.L. (1960) The response properties of single ganglion cells in the goldfish retina. J. Gen. Physiol., 43, 45–62.CrossRefGoogle Scholar
  100. Williams, D.R. (1985) Aliasing in human foveal vision. Vision Res., 25, 195–205.CrossRefGoogle Scholar
  101. Williams, T.P. and Baker, B.N. (eds) (1980) The Effects of Constant Light on Visual Prossesses, Plenum Press, New York.Google Scholar
  102. Yellot, J. I., jun (1982) Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing. Vision Res., 22, 1205–10CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • Maureen K. Powers
  • Pamela A. Raymond

There are no affiliations available

Personalised recommendations