Advertisement

Behavioural studies of fish vision: an analysis of visual capabilities

  • Ron H. Douglas
  • Craig W. Hawryshyn
Chapter

Abstract

What can fish see? This is the central question of this chapter. To find out what a human perceives is (although our colleagues in the field of human psychophysics will undoubtedly disagree) a relatively easy task: all you have to do is ask them! It is difficult to apply a comparable criterion to animals. Given the fact that fish cannot speak, one has to rely on monitoring some form of behaviour that is modulated by visual stimuli to find out what the fish can see.

Keywords

Rainbow Trout Spectral Sensitivity Colour Vision Visual Pigment Carassius Auratus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.C., Donner, K., Hyden, C., Larsen, L.O. and Reuter, T. (1988) Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature, Lond, 334, 348–50.Google Scholar
  2. Ali, M.A. (1959) The ocular structure, retinomotor and photobehavioural responses of juvenile pacific salmon. Can. J. Zool., 37, 965–96.Google Scholar
  3. Ali, M.A. and Kobayashi, H. (1967) Temperature: influence on the electroretinogram- flicker fusion frequency of the sunfish (Lepomis gibbosus L.). Rev. Can. Biol., 26, 341–5.Google Scholar
  4. Ali, M.A. and Kobayashi, H. (1968) Electroretinogram-flicker fusion frequency in albino trout. Experientia, 24, 454–5.Google Scholar
  5. Allen, E.E. and Fernald, R.D. (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni.J. Comp. Physiol., A, 157, 247–53.Google Scholar
  6. Anthony, P.D. (1981) Visual contrast thresholds in the cod Gadus morhua L. J. Fish Biol., 19, 87–103.Google Scholar
  7. Avery, J.A. and Bowmaker, J.K. (1982) Visual pigments in the four eyed fish Anableps anableps. Nature, Lond, 298, 62–3.Google Scholar
  8. Avery, J.A., Bowmaker, J.K., Djamgoz, M.B.A. and Downing, J.E.G. (1983) Ultra¬violet sensitive receptors in a freshwater fish. J. Physiol., Lond., 334, 23 P.Google Scholar
  9. Baburina, E.A., Bogatyrev, P.B. and Protasov, V.R. (1968) A study of age variation of acuity of sight of some fish. Zool. Zh., 47, 1364–9.Google Scholar
  10. Baerends, G.P., Bennema, B.E. and Vogelzang, A.A. (1960) Über die Änderung der Sehschärfe mit dem Wachstum bei Aequidens portalegrensis (Hensel) (Pisces, Cichlidae). Zool. Jb. Abt. Syst. Oko., 88, 67–78.Google Scholar
  11. Bagarinao, T. and Hunter, J.R. (1983) The visual feeding threshold and action spectrum of northern anchovy (Engraulis mordax) larvae. Calif. Coop. Oceanic Fish. Invest. Rep., 14, 245–54.Google Scholar
  12. Bassi, C.J. and Powers, M.K. (1986) Lengthened rod outer segments correlate with increased visual sensitivity in goldfish. Invest. Ophthalmol. Vis. Sci., 27 (Supp.), 236.Google Scholar
  13. Bassi, C.J. and Powers, M.K. (1987) Circadian rhythm in goldfish visual sensitivity. Invest. Ophthalmol. Vis. Sci., 28, 1811–15.Google Scholar
  14. Bassi, C.J., Williams, R.C. and Powers, M.K. (1984) Light transmittance by goldfish eyes of different sizes. Vision Res, 24, 1415–19.Google Scholar
  15. Bauer, V. (1910) Über das Farbenunterscheidungsvermögen der Fische. Pflugers Arch. ges. Physiol., 133, 7–26.Google Scholar
  16. Baylor, E.R. and Shaw, E. (1962) Refractive error and vision in fishes. Science, N.Y., 136, 157–8.Google Scholar
  17. Beauchamp, R.D. and Rowe, J.S. (1977) Goldfish spectral sensitivity: a conditioned heart rate measure in restrained or curarized fish. Vision Res, 17, 617–24.Google Scholar
  18. Beauchamp, R.D., Rowe, J.S. and O’Reilly, L.A. (1979) Goldfish spectral sensitivity: identification of the three cone mechanisms in heart-rate conditioned fish using colored adapting backgrounds. Vision Res,19,1295–302.Google Scholar
  19. Bell, D.M. (1982) Physiological and psychophysical spectral sensitivities of the cichlid fish, Hemichromis bimaculatus. J. Exp. Zool., 223, 29–32.Google Scholar
  20. Beniuc, M. (1933) Bewegungssehen, Verschmelzung und Moment bei Kampffischen. Z. vergl. Physiol., 19, 724–46.Google Scholar
  21. Bernard, G.D. and Wehner, R. (1977) Functional similarities between polarization vision and colour vision. Vision Res, 17, 1019–28.Google Scholar
  22. Bernard, G.D. and Wehner, R. (1977) Functional similarities between polarization vision and colour vision. Vision Res, 17, 1019–28.Google Scholar
  23. Blackwell, R.H. (1946) Contrast thresholds of the human eye. J. Opt. Soc. Am., 36, 624–43.Google Scholar
  24. Blaxter, J.H.S. (1964) Spectral sensitivity of the herring, Clupea harengus L.J. Exp. Biol., 41, 155–62.Google Scholar
  25. Blaxter, J.H.S. (1966) The effect of light intensity on the feeding ecology of herring. Symp. Br. Ecol. Soc., 6, 393–409.Google Scholar
  26. Blaxter, J.H.S. (1968a) Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol., 48, 39–53.Google Scholar
  27. Blaxter, J.H.S. (1968b) Light intensity, vision, and feeding in young plaice. J. Exp. Mar. Biol. Ecol., 2, 293–307.Google Scholar
  28. Blaxter, J.H.S. (1969) Visual thresholds and spectral sensitivity of flatfish larvae. J. Exp. Biol., 51, 221–30.Google Scholar
  29. Blaxter, J.H.S. (1970) 2. Light 2.3 Animals 2.32 Fishes, in Marine Ecology, Vol. 1, pt 1 (ed. O. Kinne), Wiley, London, pp. 213–320.Google Scholar
  30. Blaxter, J.H.S. (1972) Brightness discrimination in larvae of plaice and sole. J. Exp. Biol., 57, 693–700.Google Scholar
  31. Blaxter, J.H.S. (1975) The role of light in the vertical migration of fish: a review, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 189–210.Google Scholar
  32. Blaxter, J.H.S. and Jones, M.P. (1967) The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. UK, 47, 677–97.Google Scholar
  33. Blough, D.S. and Yager, D. (1972) Visual psychophysics in animals, in Handbook of Sensory Physiology, VII/4 (eds D. Jameson and L.M. Hurvich ), Springer-Verlag, Berlin, Heidelberg, New York, pp. 732–63.Google Scholar
  34. Bogenschutz, H. (1961) Vergleichende Untersuchungen über die optische Komponente der Gleichgewichtshaltung bei Fischen. Z. vergl. Physiol., 44, 626 - 55.Google Scholar
  35. Bowmaker, J.K. and Kunz, Y.W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in brown trout (Salmo trutta): age-dependent changesVision Res., 27, 2101–8.Google Scholar
  36. Braemer, W. (1957) Verhaltensphysiologische Untersuchungen am optischen Apparat bei Fischen. Z. vergl. Physiol., 39, 374–98.Google Scholar
  37. Branchek, T. (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio. II. Function. J. Comp. Neurol., 224, 116–22.Google Scholar
  38. Brecher, G.A. (1933) Die Entstehung und biologische Bedeutung der subjecktiven Zeiteinheit - des Momentes. Z. vergl. Physiol., 18, 204–43.Google Scholar
  39. Breck, J.E. and Gitter, M.J. (1983) Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish. Can. J. Fish. Aquat. Sci., 40, 162–7.Google Scholar
  40. Brett, J.R. and Groot, C. (1963) Some aspects of olfactory and visual responses in pacific salmon. J. Fish. Res. Bd Can., 20, 287–303.Google Scholar
  41. Brunner, G. (1934) Über die Sehschärfe der Elritze (.Phoxinus laevis) bei verschiedenen Helligkeiten. Z. vergl. Physiol., 21, 296 - 316.Google Scholar
  42. Canella, M.F. (1937) Influence des excitations lumineuses sur la position d’équilibre des poissons. C. R. Séanc. Soc. Biol, 124, 543–4.Google Scholar
  43. Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye. Vision Res, 13, 1–8.Google Scholar
  44. Chen, D.M. and Goldsmith, T.H. (1986) Four spectral classes of cone in the retinas of birds. J. Comp. Physiol, A, 159, 473–9.Google Scholar
  45. Clark, D.T. (1981) Visual responses in developing zebrafish (Brachydanio rerio) PhD thesis, University of Oregon, USA.Google Scholar
  46. Clarke, G.L. and Denton, E.J. (1962) Light and animal life, in The Sea: Vol. 1 (ed. M.N. Hill ), Wiley, New York, pp. 456–68.Google Scholar
  47. Clausen, R.G. (1931) Orientation in fresh water fishes. Ecology, 12, 541–6.Google Scholar
  48. Collett, T.S. and Harkness, L. (1982) Distance vision in animals, in Advances in the Analysis of Visual Behaviour (eds D.J. Ingle, M. Goodale and J.W. Mansfield ), MIT Press, Cambridge, Mass., pp. 111–76.Google Scholar
  49. Cronly-Dillon, J.R. and Müntz, W.R.A. (1965) The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Biol., 42, 481–93.Google Scholar
  50. Cronly-Dillon, J.R. and Sharma, S.C. (1968) Effect of season and sex on the photopic spectral sensitivity of the three-spined stickleback. J. Exp. Biol., 49, 679–87.Google Scholar
  51. Crozier, W.J. and Wolf, E. (1940) The flicker response curve for Fundulus. J. Gen. Physiol., 23, 677–94.Google Scholar
  52. Crozier, W.J., Wolf, E. and Zerrahn-Wolf, G. (1936) On critical frequency and critical illumination for response to flickered light. J. Gen. Physiol., 20, 211–28.Google Scholar
  53. Crozier, W.J., Wolf, E. and Zerrahn-Wolf, G. (1937) Temperature and critical illumination for reaction to flickering light - II sunfish. J. Gen. Physiol., 20, 411–31.Google Scholar
  54. Crozier, W.J., Wolf, E. and Zerrahn-Wolf, G. (1939) Temperature and critical illumination for reaction to flickering light - III sunfish. J. Gen. Physiol., 22, 487–99.Google Scholar
  55. Davis, R.E. and Schlumpf, B.E. (1983) Circumvention of extraretinal photoresponses in assessing recovery of vision following optic nerve crush in goldfish. Behav. Brain Res., 7, 65–79.Google Scholar
  56. Davitz, M.A. and McKaye, K.R. (1978) Discrimination between horizontally and vertically polarized light by the cichlid fish Pseudotropheus macrophthalmus. Copeia, 2, 333–4.Google Scholar
  57. Dearry, A. and Barlow, R.B. (1987) Circadian rhythms in the green sunfish retina. J. Gen. Physiol, 89, 745–70.Google Scholar
  58. Denton, E.J. and Pirenne, M.H. (1954) The absolute sensitivity and functional stability of the human eye. J. Physiol Lond., 123, 417–42.Google Scholar
  59. Denton, E.J. and Warren, F.J. (1957) The photosensitive pigments in the retinae of deep-sea fish. J. Mar. Biol Ass. UK, 36, 651–62.Google Scholar
  60. Dill, P.A. (1971) Perception of polarized light by yearling sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd Can., 28, 1319–22.Google Scholar
  61. Douglas, R.H. (1980) Visual adaptation and spectral sensitivity in rainbow trout, PhD thesis, University of Stirling, UK.Google Scholar
  62. Douglas, R.H. (1982) The function of photomechanical movements in the retina of the rainbow trout (Salmo gairdneri). J. Exp. Biol, 96, 389–403.Google Scholar
  63. Douglas, R.H. (1983) Spectral sensitivity of rainbow trout (Salmo gairdneri). Rev. Can. Biol, 42, 117–22.Google Scholar
  64. Douglas, R.H. (1986) Photopic spectral sensitivity of a teleost fish, the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J. Comp. Physiol, A, 159, 415–21.Google Scholar
  65. Douglas, R.H. (1989) The spectral transmission of the lens and cornea of the brown trout (Salmo trutta) and goldfish (Carassius auratus): effect of age and implications for ultraviolet vision. Vision Res., 29, 861–9.Google Scholar
  66. Douglas, R.H. and McGuigan, C.M. (1989) The spectral transmission of freshwater teleost ocular media - an interspecific comparison and a guide to potential ultraviolet sensitivity. Vision Res., 29, 871–9.Google Scholar
  67. Douglas, R.H., Eva, J. and Guttridge, N. (1988) Size constancy in goldfish (Carassius auratus). Behav. Brain Res., 30, 37–42.Google Scholar
  68. Douglas, R.H., Bowmaker, J.K. and Kunz-Ramsay, Y.W. (1989) Ultraviolet vision in fish, in Seeing Contour and Colour (eds J.J. Kulikowski, C.M. Dickinson and I.J. Murray ), Pergamon Press, Oxford, pp. 601–16.Google Scholar
  69. Dyer, R.S. and Rigdon G.C. (1987) Urethane affects the rat visual system at subanaesthetic doses. Physiol Behav., 41, 327–30.Google Scholar
  70. Easter, S.S. (1972) Pursuit eye movements in goldfish (Carassius auratus). Vision Res., 12, 673–88.Google Scholar
  71. Easter, S.S., Johns, P.R. and Baumann, L.R. (1977) Growth of the adult goldfish eye - I: Optics. Vision Res., 17, 469–77.Google Scholar
  72. Fernald, R.D. and Wright, S.E. (1985) Growth of the visual system in the African cichlid fish, Haplochromis burtoni - optics. Vision Res., 25, 155–61.Google Scholar
  73. Forward, R.B., jun. and Waterman, T.H. (1973) Evidence for e-vector and light intensity pattern discrimination by the teleost Dermogenys. J. Comp. Physiol, A, 87, 187–202.Google Scholar
  74. Forward, R.B., jun., Horch, K.W. and Waterman, T.H. (1972) Visual orientation at the water surface by the teleost Zenarchopterus. Biol Bull Mar. Biol Lab., Woods Hole, 143, 112–26.Google Scholar
  75. Fukurotani, K. and Hashimoto, Y. (1984) A new type of S-potential in the retina of cyprinid fish: the tetraphasic spectral response. Invest. Ophthalmol Vis. Sci., 24 (Supp.), 118.Google Scholar
  76. Gibson, R.M. (1983) Visual abilities and foraging behaviour of predatory fish. Trends Neurosci., 6, 198–9.Google Scholar
  77. Glass, C.W., War die, C.S. and Mojsiewicz, W.R. (1986) A light intensity threshold for schooling in the Atlantic mackerel, Scomber scombrus. J. Fish Biol., 29 ( Supp. A), 71–81.Google Scholar
  78. Glezer, V.D., Leushina, L.I., Nevskaya, A.A. and Prazdnikova, N.V. (1974) Studies on visual pattern recognition in man and animals. Vision Res., 14, 555–84.Google Scholar
  79. Graber, V. (1885) Über die Helligkeits- und Farbenempfindlichkeit einiger Meerthiere. Sber. Akad. Wiss. Abt. Physiol., Wien, 91, 129–50.Google Scholar
  80. Graf, V.A. (1979) Four spectral mechanisms in the pigeon (Columbia livia), in Neural Mechanisms of Behaviour in Pigeon (eds A.M. Granada and J.H. Maxwell ), Plenum Press, New York, pp. 129–44.Google Scholar
  81. Gramoni, R. and Ali, M.A. (1970) L’Electrorétinogramme et sa fréquence de fusion chez Amia calva. Rev. Can. Biol., 29, 353–63.Google Scholar
  82. Gruber, S.H. (1967) A behavioural measurement of dark adaptation in the lemon shark, Negaprion brevirostris, in Sharks, Skates and Rays (eds P.W. Gilbert, R.F. Mathewson and D.P. Rail ), Johns Hopkins University Press, Baltimore, MD, pp. 479–90.Google Scholar
  83. Gruber, S.H. (1975) Duplex vision in elasmobranchs: histological, electrophysiological and psychophysical evidence, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum Press, New York, London, pp. 525–40.Google Scholar
  84. Grundfest, H. (1932a) The sensibility of the sun-fish, Lepomis, to monochromatic radiation of low intensities. J. Gen. Physiol., 15, 307–28.Google Scholar
  85. Grundfest, H. (1932b) The spectral sensibility of the sun-fish as evidence for a double visual system. J. Gen. Physiol., 15, 507–24.Google Scholar
  86. Hairston, N.G., Kao, T.L. and Easter, S.S. (1982) Fish vision and the detection of planktonic prey. Nature, Lond., 218, 1240–42.Google Scholar
  87. Hamburger, V. (1926) Versuche über Komplimentar-farben bei Ellritzen (Phoxinus laevis). Z. vergi. Physiol., 4, 286–304.Google Scholar
  88. Hanyu, I. and Ali, M.A. (1963) Flicker fusion frequency of ERG in light-adapted goldfish at various temperatures. Science, N.Y., 140, 662–3.Google Scholar
  89. Hanyu, I. and Ali, M.A. (1964) Electroretinogram and its flicker fusion frequency at different temperatures in light adapted salmon (Salmo salar). J. Cell. Comp. Physiol., 63, 309–21.Google Scholar
  90. Harden-Jones, F.R. (1956) The behaviour of minnows in relation to light intensity. J. Exp. Biol., 33, 271–81.Google Scholar
  91. Harden-Jones, F.R. (1963) The reaction of fish to moving backgrounds. J. Exp. Biol., 40, 437–46.Google Scholar
  92. Harosi, F.I. (1985) Ultraviolet- and violet absorbing vertebrate visual pigments: dichroic and bleaching properties, in The Visual System (eds A. Fein and J.S. Levine ), Alan R. Liss Inc., New York, pp. 41–55.Google Scholar
  93. Harosi, F.I. and Fukurotani, K. (1986) Correlation between cone absorbance and horizontal cell response from 300 to 700 nm in fish. Invest. Ophthalmol. Vis. Sci., 27, 192.Google Scholar
  94. Harosi, F.I. and Hashimoto, Y. (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science, N.Y., 222, 1021–3.Google Scholar
  95. Hart, W.M. (1987) The temporal responsiveness of vision, in Adler’s Physiology of the Eye: Clinical Applications (eds R.A. Moses and W.M. Hart ), C.V. Mosby Co., St Louis, Washington, Toronto, pp. 429–57.Google Scholar
  96. Hawryshyn, C.W. (1982) Studies of animal color vision: comments on some important theoretical considerations. Can. J. Zool., 60, 2968–70.Google Scholar
  97. Hawryshyn, C.W. (1984) Ultraviolet photoreception in fish, PhD thesis, University of Waterloo, Canada.Google Scholar
  98. Hawryshyn, C.W. and Beauchamp, R.D. (1982) Aberrant high blue sensitivity in goldfish. Invest. Ophthalmol. Vis. Sci., 22 (Supp.), 282.Google Scholar
  99. Hawryshyn, C.W. and Beauchamp, R. (1985) Ultraviolet photosensitivity in goldfish: an independent UV retinal mechanism. Vision Res., 25, 11–20.Google Scholar
  100. Hawryshyn, C.W. and Harosi, F.I. (1987) Cellular basis of ultraviolet photoreception in carp (Cyprinus carpio). Invest. Ophthalmol. Vis. Sci., 28 (Supp.), 343.Google Scholar
  101. Hawryshyn, C.W. and McFarland, W.N. (1987) Cone photoreceptor mechanisms and the detection of polarised light in fish. J. Comp. Physiol., A, 160, 459–65.Google Scholar
  102. Hawryshyn, C.W., Chou, B.R. and Beauchamp, R.D. (1985) Ultraviolet transmission by the ocular media of goldfish: implications for ultraviolet sensitivity in fishes. Can. J. Zool., 63, 1244–51.Google Scholar
  103. Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1987) Developmental changes in ultraviolet photosensitivity in rainbow trout. Soc. Neurosci. Abstr., 13, 1298.Google Scholar
  104. Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1989a) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Visual Neurosci., 2 (3), 247–54.Google Scholar
  105. Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1989a) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Visual Neurosci., 2 (3), 247–54.Google Scholar
  106. Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1989a) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Visual Neurosci., 2 (3), 247–54.Google Scholar
  107. Hecht, S., Shlaer, S. and Pirenne, M.H. (1942) Energy, quanta and vision. J. Gen. Physiol., 25, 819–40.Google Scholar
  108. Helmholtz, H. von (1866) Handbuch der physiologischen Optik. Voss, Hamburg, Leipzig (English translation by J.P.C. Southall - Physiological Optics. Vols 1, 2 and 3, Optical Society of America, Rochester, New York ).Google Scholar
  109. Hemmings, C.C. (1966) Factors influencing the visibility of objects underwater, in Light as an Ecological Factor (eds R. Bainbridge, G.C. Evans and O. Rackham ), Blackwell, Oxford, pp. 359–74.Google Scholar
  110. Hemmings, C.C. (1975) The visibility of objects underwater, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 543–5.Google Scholar
  111. Herter, K. (1929) Dressurversuche an Fischen. Z. vergl. Physiol., 10, 688 - 711.Google Scholar
  112. Herter, K. (1930) Weitere Dressurversuche an Fischen. Z. vergl. Physiol., 11, 730–48.Google Scholar
  113. Herter, K. (1953) Die Fischdressuren und ihre sinnesphysiologischen Grundlagen, Akadamischer Verlag, Berlin.Google Scholar
  114. Hester, F.J. (1968) Visual contrast thresholds of the goldfish (Carassius auratus). Vision Res., 8, 1315–35.Google Scholar
  115. Himstedt, W., Helas, A. and Somer, T.J. (1981) Projections of color coding retinal neurons in urodele amphibians. Brain Behav. Evol., 18, 19–32.Google Scholar
  116. Hinde, R.A. (1970) Animal Behaviour: a Synthesis of Ethology and Comparative Psychology, McGraw-Hill, Tokyo.Google Scholar
  117. Hinshaw, J.M. (1985) Effects of illumination and prey contrast on survival and growth. Trans. Am. Fish. Soc., 114, 540–45.Google Scholar
  118. Hodos, W. and Yolen, N.M. (1976) Behavioural correlates of tectal compression in goldfish II. Visual acuity. Brain Behav. Evol., 13, 468–74.Google Scholar
  119. Holst, E. von (1935) Über den Lichtrückenreflex bei Fischen. Pubbl. Staz. Zool. Napoli, 15, 143–58.Google Scholar
  120. Holst, E. von, (1950) Quantitative Messung von Stimmungen im Verhalten der Fische, in SEB Symposium 4 - Physiological Mechanisms in Animal Behaviour, Cambridge University Press, Cambridge, pp. 143–72.Google Scholar
  121. Holtzman, J.D., Sidtis, J.J., Volpe, B.T., Wilson, D.H. and Gazzaniga, M.S. (1981) Dissociation of spatial information for stimulus localisation and the control of attention. Brain, 104, 861–72.Google Scholar
  122. Horner, J.L., Longo, N. and Bitterman, M.E. (1960) A classical conditioning technique for small aquatic animals. Am. J. Psychol., 73, 623–6.Google Scholar
  123. Hunter, J.R. (1968) Effects of light on schooling and feeding of jack mackerel, Trachurus symmetricus. J. Fish. Res. Bd Can., 25, 393–407.Google Scholar
  124. Ingle, D. (1967) Two visual mechanisms underlying the behaviour of fish. Psychol. Forsch., 31, 44–51.Google Scholar
  125. Ingle, D. (1968) Spatial dimensions of vision in fish, in The Central Nervous System and Fish Behaviour (ed. D. Ingle ), University of Chicago Press, Chicago, London, pp. 51–9.Google Scholar
  126. Ingle, D. (1971) Vision: the experimental analysis of visual behaviour, in Fish Physiology, Vol. 5, (eds W.S. Hoar and D.J. Randall ), Academic Press, New York, pp. 59–77.Google Scholar
  127. Ingle, D.J. (1985) The goldfish as a retinex animal. Science, N.Y., 227, 651–64.Google Scholar
  128. Jacobs, G.H. (1982) Comparative Colour Vision, Academic Press, New York.Google Scholar
  129. John, K.R. (1964) Illumination, vision, and schooling of Astyanax mexicanus. J. Fish. Res. Bd Can., 21, 1453–73.Google Scholar
  130. Johns, P.R. and Easter, S.S. (1977) Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol., 176, 331–42.Google Scholar
  131. Kawamoto, N.Y. and Konishi, J. (1952) The correlation between wavelength and radiant energy affecting phototaxis. Rep. Fac. Fish. Pref. Univ. Mie-Tou, 1, 197–208.Google Scholar
  132. Kawamura, G. (1979) Fundamental study on application of the vision of the spotted mackerel, Pneumatophorus tapeinocephalus (Bleeker), to angling techniques-I: importance of vision estimated from brain pattern, visual acuity of retina, and accommodation. Bull. Jap. Soc. Scient. Fish., 45, 281–6.Google Scholar
  133. Kawamura, G., Shibata, A. and Yonemori, T. (1981) Response of teleosts to the plane of polarised light as determined by the heart beat rate. Bull. Jap. Soc. Scient. Fish., 47, 727–9.Google Scholar
  134. Kawamura, G., Tsuda, R., Kumai, H. and Ohashi, S. (1984a) The visual cell morphology of Pagrus major and its adaptive changes with shift from pelagic to benthic habitats. Bull. Jap. Soc. Scient. Fish., 50, 1975–80.Google Scholar
  135. Kawamura, G., Mukai, Y. and Ohta, H. (1984b) Change in the visual threshold with development of rods in Ayu Plecoglossus altivelis. Bull. Jap. Soc. Scient. Fish., 50, 2133.Google Scholar
  136. Kleerekoper, H., Matis, J.H., Timms, A.M. and Gensler, P. (1973) Locomotor response of the goldfish to polarized light and its e-vector. J. Comp. Physiol., 86, 27–36.Google Scholar
  137. Kobayashi, H. (1962) A comparative study on electroretinogram in fish, with special reference to ecological aspects. J. Shimonoseki Coll. Fish., 11 (3), 17–148.Google Scholar
  138. Land, E.H. (1959) Color vision and the natural image. Parts I and II. Proc. Natn. Acad. Sci. USA, 45, 115–29 and 636 - 44.Google Scholar
  139. Lang, H.-J. (1967) Über das Lichtruckenverhalten des guppy (Lebistes reticulatus) in farbigen und farblosen Lichtern. Z. vergl. Physiol., 56, 296–340.Google Scholar
  140. Levine, J.S. and MacNichol, E.F. (1982) Colour vision in fishes. Sci. Am., 246 (2), 140–49.Google Scholar
  141. Lissmann, H.-W. (1933) Die Umwelt des Kampffisches (Betta splendens). Z. vergl. Physiol, 18, 65–111.Google Scholar
  142. Loukashkin, A.S. and Grant, N. (1965) Behaviour and natural reactions of the northern anchovy, Engraulis mordax Girard, under the influence of light of different wavelengths and intensities and total darkness. Proc. Calif. Acad. Sci., 31, 631–92.Google Scholar
  143. Lyall, A.H. (1957) The growth of the trout retina. Q. J. Microsc. Sci., 98, 101–10.Google Scholar
  144. Lyon, E.P. (1904) On rheotropism. I - rheotropism in fishes. Am. J. Physiol., 12, 151–61.Google Scholar
  145. Lythgoe, J.N. (1968) Visual pigments and visual range underwater. Vision Res., 8, 997–1011.Google Scholar
  146. Lythgoe, J.N. (1975) The ecology, function and phylogeny of iridescent multilayers in fish corneas, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 211–7.Google Scholar
  147. Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.Google Scholar
  148. McCleary, R.A. and Bernstein, J.J. (1959) A unique method for control of brightness cues in study of color vision in fish. Physiol. Zool., 32, 284–92.Google Scholar
  149. McFarland, W.N. (1986) Light in the sea - correlations with behaviours of fishes and invertebrates. Am. Zool, 26, 389–401.Google Scholar
  150. McFarland, W.N. and Münz, F.W. (1975) The visible spectrum during twilight and its implications to vision, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, London, pp. 249–70.Google Scholar
  151. Marc, R.E. and Sperling, H.G. (1976) The chromatic organisation of the goldfish cone mosaic. Vision Res., 16, 1211–24.Google Scholar
  152. Martin, G.R. (1982) An owl’s eye: schematic optics and visual performance in Strix aluco L. J. Comp. Physiol., A, 145, 341–9.Google Scholar
  153. Martin, G.R. (1983) Schematic eye models in vertebrates, in Progress in Sensory Physiology, Vol. 4 (ed. D. Ottoson ), Springer, Berlin, pp. 43–81.Google Scholar
  154. Meesters, A. (1940) Uber die Organisation des Gesichtsfeldes der Fische. Z. Tierpsychol., 4, 84–149.Google Scholar
  155. Muller, H. (1952) Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Abt. Allgemeine Zool. Physiol., 63, 276–324.Google Scholar
  156. Müntz, W.R.A. (1974) Comparative aspects in behavioural studies of vertebrate vision, in The Eye, Vol. 6 (eds H. Davson and L.T. Graham ), Academic Press, New York, San Francisco, London, pp. 155–226.Google Scholar
  157. Muntz, W.R.A. and Cronly-Dillon, J.R. (1966) Colour discrimination in goldfish. Anim. Behav., 14, 351–5.Google Scholar
  158. Muntz, W.R.A. and Gwyther, J. (1988) Visual acuity in Octopus pallidus and Octopus australis. J. Exp. Biol., 134, 119–29.Google Scholar
  159. Muntz, W.R.A. and Northmore, D.P.M. (1970) Vision and visual pigments in a fish, Scardinius erythrophthalmus (the rudd). Vision Res., 10, 281–98.Google Scholar
  160. Muntz, W.R.A. and Northmore, D.P.M. (1971) The independence of the photopic receptor systems underlying visual thresholds in a teleost. Vision Res., 11, 861–76.Google Scholar
  161. Muntz, W.R.A. and Northmore, D.P.M. (1973) Scotopic spectral sensitivity in a teleost fish (Scardinius erythrophthalmus) adapted to different day lengths. Vision Res., 13, 245–52.Google Scholar
  162. Nakamura, E.L. (1968a) Visual acuity of two tunas, Katsuwonus pelamis and Euthynnus affinis. Copeia, 1, 41–9.Google Scholar
  163. Nakamura, E.L. (1986b) Visual acuity of yellowfin tuna, Thunnus albacares. FAO Fish Rep., 62, 463–8.Google Scholar
  164. Neave, D.A. (1984) The development of visual acuity in larval plaice (Pleuronectes platessa L.) and turbot (Scophthalmus maximus L.). J. Exp. Mar. Biol. Ecol., 78, 167–75.Google Scholar
  165. Neumeyer, C. (1984) On spectral sensitivity in the goldfish: evidence for neural interactions between different ‘cone mechanisms’. Vision Res., 24, 1123–231Google Scholar
  166. Neumeyer, C. (1985) An ultraviolet receptor as a fourth receptor type in goldfish colour vision. Naturwissenschaften, 72, 162–3.Google Scholar
  167. Neumeyer, C. (1986) Wavelength discrimination in the goldfish.J. Comp. Physiol., A, 158, 203–13.Google Scholar
  168. Northmore, D.P.M. (1973) Spectral sensitivity of the rudd (Scardinius erythrophthalmus), DPhil. thesis, University of Sussex, UK.Google Scholar
  169. Northmore, D.P.M. (1977) Spatial summation and light adaptation in the goldfish visual system. Nature, Lond., 268, 450–51.Google Scholar
  170. Northmore, D.P.M. and Dvorak, C.A. (1979) Contrast sensitivity and acuity of the goldfish. Vision Res., 19, 255–61.Google Scholar
  171. Northmore, D.P.M. and Müntz, W.R.A. (1974) Effects of stimulus size on spectral sensitivity in a fish (,Scardinius erythrophthalmus), measured with a classical conditioning paradigm. Vision Res., 14, 503–14.Google Scholar
  172. Northmore, D.P.M. and Yager, D. (1975) Psychophysical methods for investigations of vision in fishes, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum, New York, pp. 689–704.Google Scholar
  173. Northmore, D.P.M., Volkman, F.C. and Yager, D. (1978) Vision in fishes: colour and pattern, in Behaviour of Fish and Other Aquatic Animals (ed. M.I. Mostofsky ), Academic Press, New York, pp. 79–136.Google Scholar
  174. O’Connell, C.P. (1963) The structure of the eye of Sardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts. J. Morph., 113, 287–329.Google Scholar
  175. Otis, L.S., Cerf, J.A. and Thorns, G.J. (1957) Conditioned inhibition of respiration and heart rate in the goldfish. Science, N.Y., 126, 263–4.Google Scholar
  176. Otten, E. (1981) Vision during growth of a generalised Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool., 31, 650–700.Google Scholar
  177. Oyama, T. and Jitsumori, M. (1973) A behavioural study of colour mixture in the carp. Vision Res., 13, 2299–308.Google Scholar
  178. Pener-Salomon, H. (1972) The optomotor response of the fishes Acanthobrama terrae- sanctae and Barbus canis at different light intensities. Isr. J. Zool., 21, 113–22.Google Scholar
  179. Penzlin, H. and Stubbe, M. (1977) Studies on the visual acuity in the goldfish (Carassius auratus L.). Zool. Jb. Abt. Allgemeine Zool. Physiol., 81, 310–26.Google Scholar
  180. Perkins, F.T. and Wheeler, R.H. (1931) Configurational learning in the goldfish. Comp. Psychol. Monogr., 7, 1–50.Google Scholar
  181. Pfeiffer, W. (1964) Equilibrium orientation in fish, in International Review of General and Experimental Zoology (eds W.J.L. Felts and R.J. Harrison ), Academic Press, New York and London, pp. 77–111.Google Scholar
  182. Pirenne, M.H. (1967) Vision and the Eye, Chapman and Hall, London.Google Scholar
  183. Pirenne, M.H. and Denton, E.J. (1952) Accuracy and sensitivity of the human eye. Nature, Lond., 170, 1039–42.Google Scholar
  184. Powers, M.K. (1978) Light-adapted spectral sensitivity of the goldfish: a reflex measure. Vision Res., 18, 1131–6.Google Scholar
  185. Powers, M.K. and Easter, S.S. (1978a) Absolute visual sensitivity of the goldfish. Vision Res., 18, 1137–47.Google Scholar
  186. Powers, M.K. and Easter, S.S. (1978b) Wavelength discrimination by the goldfish near absolute visual threshold. Vision Res., 18, 1149–54.Google Scholar
  187. Powers, M.K. and Easter, S.S. (1983) Behavioural significance of retinal structure and function in fishes, in Fish Neurobiology (eds R. Davis and G. Northcutt ), University of Michigan Press, Ann Arbor, pp. 377–404.Google Scholar
  188. Powers, M.K., Bassi, C.J., Rone, L.A. and Raymond, P.A. (1988) Visual detection by the rod system in goldfish of different sizes. Vision Res., 28, 211–21Google Scholar
  189. Protasov, V.R. (1964) Some features of the vision of fishes. Department of Agriculture and Fisheries for Scotland, Marine Laboratory, Aberdeen, translation no. 949 (transí. Z. Kababa), mimeo. (Nekotorye osobennosti zrennia ryb, in Skorosti Dvizheniia I Nekotorye Osobennosti Zreniia Ryb, by D.V. Radakov and V.R. Protasov, Moskva, Akad. Nauk. SSSR, Inst. Morfologii Zhivotmykh (Publishing House, ‘Nauka’) ( 1964 ), pp. 29–48.Google Scholar
  190. Rahmann, H., Jeserich, G. and Zeutzius, I. (1979) Ontogeny of visual acuity of rainbow trout under normal conditions and light deprivation. Behaviour, 68, 315–22.Google Scholar
  191. Reeves, C.D. (1919) Discrimination of light of different wavelengths by fish. Behav. Monogr., 4, 1–106.Google Scholar
  192. Riggs, L.A. (1965) Visual acuity, in Vision and Visual Perception (ed. C.W. Graham ), John Wiley & Sons Inc., New York, pp. 321–49.Google Scholar
  193. Rowley, J.B. (1934) Discrimination limens of pattern and size in the goldfish Carassius auratus. Genet. Psychol. Monogr., 15, 245–301.Google Scholar
  194. Saxena, A. (1966) Lernkapazität, Gedächtnis und Transpositionsvermögen bei Forellen. Zool. J. Abt. Allgemeine Zool. Physiol. Tiere, 69, 63–94.Google Scholar
  195. Schiemenz, F. (1924) Über den Farbensinn der Fische. Z. vergl. Physiol., 1, 175–200.Google Scholar
  196. Schneider, C.W. (1968) Electrophysiological analysis of the mechanisms underlying critical flicker frequency. Vision Res., 8, 1235–43.Google Scholar
  197. Schulte, A. (1957) Transfer- und Transpositionsversuche mit monokular dressierten Fischen. Z. vergl. Physiol., 39, 432–76.Google Scholar
  198. Sgonina, K. (1933) Die Helligkeitsunterscheidungsvermögen der Elritze (Phoxinus laevis). Z. vergl. Physiol., 18, 516–23.Google Scholar
  199. Shaw, E. (1961) Minimal light intensity and the dispersal of schooling fish. Bull. Inst. Océanogr. Monaco, 1213, 1–8.Google Scholar
  200. Shefner, J.M. and Levine, M.W. (1976) A psychophysical demonstration of goldfish trichromacy. Vision Res., 16, 671–3.Google Scholar
  201. Silver, P.H. (1974) Photopic spectral sensitivity of the neon tetra (Paracheirodon innesi (Myers)) found by the use of a dorsal light reaction. Vision Res., 14, 329–34.Google Scholar
  202. Sivak, J.G. (1980) Accommodation in vertebrates: a contemporary survey. Curr. Top. Eye Res., 3, 281–330.Google Scholar
  203. Snyder, A.W., Bossomaier, T.R.J, and Highes, A. (1986) Optical image quality and the cone mosaic. Science, N.Y., 231, 499–501.Google Scholar
  204. Spekreijse, H., Wagner, H.G. and Wolbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. Neurophysiol., 35, 73–86.Google Scholar
  205. Sroczynski, S. (1981) Optical system of the eye of the ruff (Acerina cernu L.). Zool. Jb. Abt. Allgemeine Zool. Physiol., 85, 316–42.Google Scholar
  206. Stebbins, W.C. (1970) Principles of animal psychophysics, in Animal Psychophysics: the Design and Conduct of Sensory Experiments (ed. W.C. Stebbins), Appleton- Century-Crofts, New York, pp. 1–19.Google Scholar
  207. Sutherland, N.S. (1961) The methods and findings of experiments on the visual discrimination of shapes by animals. Q. J. Exp. Psychol.,Monogr. 1, 1–68.Google Scholar
  208. Sutherland, N.S. (1968a) Outlines of a theory of visual pattern recognition in animals and man. Proc. R. Soc., B, 171, 297–317.Google Scholar
  209. Sutherland, N.S. (1968b) Shape discrimination in the goldfish, in The Central Nervous System and Fish Behaviour (ed. D. Ingle ), University of Chicago Press, Chicago and London, pp. 35–50.Google Scholar
  210. Sutherland, N.S. (1969) Shape discrimination in rat, octopus and goldfish: a comparative study. J. Comp. Physiol. Psychol., 67, 160–76.Google Scholar
  211. Takahashi, M., Murachi, S. and Karakawa, Y. (1968) Studies on the optomotor reaction of fishes. J. Fac. Fish. Anim. Husb. Hiroshima Univ., 7, 193–205.Google Scholar
  212. Tamura, T. (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. Scient. Fish., 22, 536–57Google Scholar
  213. Tamura, T. and Hanyu, I. (1959) The flicker electroretinogram of the carp eye. Bull. Jap. Soc. Scient. Fish., 25, 624–31.Google Scholar
  214. Tamura, T. and Wisby, W.J. (1963) The visual sense of pelagic fishes especially the visual axis and accommodation. Bull. Mar. Sci. Gulf Caribb., 13, 433–48.Google Scholar
  215. Tavolga, W.N. and Jacobs, D.W. (1971) Scotopic thresholds for monochromatic light in the cichlid fish, Tilapia heudeloti macrocephala. Vision Res., 11, 713–17.Google Scholar
  216. Teyssedre, C. and Moller, P. (1982) The optomotor response in weak-electric mormyrid fish: can they see? Z. Tierpsychol., 60, 306–12.Google Scholar
  217. Thibault, C. (1949) Action de la lumière blanche et monochromatique sur la posture des poissons téléostéens. Utilisation de cette action pour l’étude de la vision. Archs. Sci. Physiol., 3, 101–24.Google Scholar
  218. Thorpe, S.A. (1971) Behavioural measures of spectral sensitivity of the goldfish at different temperatures. Vision Res., 11, 419–33.Google Scholar
  219. Thorpe, S.A. (1973) The effects of temperature on the psychophysical and electroretinographic spectral sensitivity of the chromatically-adapted goldfish. Vision Res., 13, 59–72.Google Scholar
  220. Tsin, A.T.C, and Beatty, D.D. (1977) Visual pigment changes in rainbow trout in response to temperature. Science, N.Y., 195, 1358–60.Google Scholar
  221. Uhlrich, D.J., Essock, E.A. and Lehmkuhle, S. (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav. Brain Res., 2, 291–9.Google Scholar
  222. van Dijk, B.W. and Spekreijse, H. (1984) Linear colour opponency in carp retinal ganglion cells. Vision Res., 24, 1865–72.Google Scholar
  223. Verheigen, F.J. (1953) Laboratory experiments with the herring, Clupea harengus. Experientia, 9 (5), 193–4.Google Scholar
  224. Vinyard, G.L. and O’Brien, W.J. (1976) Effects of light and turbidity on the reactive distance of the bluegill sunfish (.Lepomis macrochirus). J. Fish. Res. Bd Can., 33, 2845–9.Google Scholar
  225. Volkmann, F.C. (1975) Behavioural studies of the discrimination of visual orientation and motion by goldfish, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum Press, New York, pp. 731–41.Google Scholar
  226. Volkmann, F.C., Zametkin, A.J. and Stoykovich, C.A. (1974) Visual discrimination of orientation by the goldfish, Carassius auratus. J. Comp. Physiol. Psychol., 86, 875–82.Google Scholar
  227. Walls, G.L. (1942) The Vertebrate Eye and its Adaptive Radiation, Hafner, New York.Google Scholar
  228. Warner, L.H. (1931) The problem of color vision in fishes. Q. Rev. Biol., 6, 329–48.Google Scholar
  229. Waterman, T.H. (1975) Natural polarized light and e-vector discrimination by vertebrates, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 305–35.Google Scholar
  230. Waterman, T.H. and Forward, R.B., jun. (1972) Field demonstration of polarotaxis in the fish Zenarchopterus. J. Exp. Zool., 180, 33–54.Google Scholar
  231. Weiler, I.J. (1966) Restoration of visual acuity after optic nerve section and regeneration in Astronotus ocellatus. Exp. Neurol., 15, 377–86.Google Scholar
  232. Wheeler, T.G. (1982) Colour vision and retinal chromatic information processing in teleost: a review. Brain Res. Rev., 4, 177–235.Google Scholar
  233. Wheeler, T.G. (1987) Goldfish spectral sensitivity increase with decreasing tempera-ture. Expl Eye Res., 44, 617–22.Google Scholar
  234. Wilkinson, F. (1972) A behavioural measure of grating acuity in the goldfish, MA thesis, Dalhousie University, Halifax, Canada.Google Scholar
  235. Wolf, E. and Zerrahn-Wolf, G. (1936) Threshold intensity of illumination and flicker frequency for the eye of the sun-fish. J. Gen. Physiol., 19, 495–502.Google Scholar
  236. Yager, D. (1967) Behavioural measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish, Carassius auratus. Vision Res., 7, 707–27.Google Scholar
  237. Yager, D., Buch, S. and Duncan, I.-A. (1971) Effects of temperature on the visually evoked tectal potential and brightness perception in goldfish. Vision Res., 11, 849–60.Google Scholar
  238. Yamanouchi, T. (1956) The visual acuity of the coral fish Microcanthus strigatus (Cuvier and Valenciennes). Pubis Seto Mar. Biol. Lab., V (2), 133–56.Google Scholar
  239. Yarczower, M. and Bitterman, M.E. (1965) Stimulus generalization in the goldfish, in Stimulus Generalization (ed. D.J. Mostofsky ), Stanford University Press, Stanford, California, pp. 179–92.Google Scholar
  240. Zeki, S. (1980) The representation of colours in the cerebral cortex. Nature, Lond., 284, 412–18.Google Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • Ron H. Douglas
  • Craig W. Hawryshyn

There are no affiliations available

Personalised recommendations