Skip to main content

The role of medicinal chemistry in the discovery of DNA-active anticancer drugs: from random searching, through lead development, to de novo design

  • Chapter

Part of the book series: Cancer Biology and Medicine ((CABM,volume 3))

Abstract

Systematic attempts to use chemotherapy as a primary method of cancer treatment began in the late 1940s, with the use of nitrogen mustard to treat leukaemias and lymphomas1, and, from that time, the search for effective small-molecule anticancer drugs has been one of the significant goals of medicinal chemistry. The history of this endeavour has an important theme running through it: the changing relative importance of different scientific disciplines and how they have influenced the philosophy behind the medicinal chemistry of anticancer drug discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodman, L. S., Wintrobe, M. M., Damesheck, W., Goodman, M. J., Gilman, A. and McLennan, M. T. (1946). Nitrogen mustard therapy. Use of methyl-bis(ß-chloroethyl)amine hydrochloride and tris-(ß-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders.J. Am. Med. Assoc.,132, 126–132

    PubMed  CAS  Google Scholar 

  2. Zee-Cheng, R. K.-Y. and Cheng, C. C. (1988). Screening and evaluation of anticancer agents.Methods Finding Exptl. Clin. Pharmacol.,10, 67–101

    CAS  Google Scholar 

  3. Hansch, C. and Leo, A. J. (1979).Substituent Constants for Correlation Analysis in Chemistry and Biology. N Y: Wiley-Interscience

    Google Scholar 

  4. Martin, Y. C. (1978).Quantitative Drug Design: A Critical Introduction. In Marcel Dekker, NY: Magee, P. S., Henry, D. R. and Block, J. H. (eds.) (1990)Probing Bioactive Mechanisms, ACS Symposium Series 413. NY: ACS

    Google Scholar 

  5. Vane, J. and Cuatrecasas, P. (1984). Genetic engineering and pharmaceuticals.Nature (London),312, 303–305

    Article  CAS  Google Scholar 

  6. Upeslacis, J. and Hinman, L. (1988). Chemical modification of antibodies for cancer chemotherapy.Ann. Rep. Med. Chem.,23, 151–160

    Article  CAS  Google Scholar 

  7. Blattler, W. A., Lambert, J. M. and Goldmacher, V. S. (1989) Realising the full potential of immunotoxins.Cancer Cells,1, 50–55

    PubMed  CAS  Google Scholar 

  8. Rosenberg, S (1985) Lymphokine-activated killer cells: a new approach to the immunotherapy of cancer.J. Natl. Cancer Inst.,75, 595–603

    PubMed  CAS  Google Scholar 

  9. . Lotze, M. T., Frana, L. W., Sharrow, S. O., Robb, R. J. and Rosenberg, S. A. (1985).In vivoadministration of purified human interleukin 2.J. Immunol.,134, 157–166

    PubMed  CAS  Google Scholar 

  10. .Thompson, J. A., Brady, J., Kidd, P. and Feter, A. (1985). Recombinantα-2-interferon in the treatment of hairy cell leukemia. Cancer Treatment Rep.,69, 791–793

    CAS  Google Scholar 

  11. Blick, M., Sherwin, S. A., Rosenblum, M. and Gutterman, J. (1987). Phase I study of recombinant tumor necrosis factor in cancer patients.Cancer Res.,47, 2986–2989

    PubMed  CAS  Google Scholar 

  12. Cillo, C., Mach, J.-P., Schreyer, M. and Carrel, S. (1984). Antigenic heterogeneity of clones and subclones from human melanoma sublines demonstrated by a panel of monoclonal antibodies and microfluorometric analysis.Int. J. Cancer,34, 11–21

    Article  PubMed  CAS  Google Scholar 

  13. . Sutherland, R., Buchegger, F., Schreyer, M., Vacca, A. and Mach, J.-P. (1987). Penetration and binding of radiolabeled anti-carcinoembryonic antigen monoclonal antibodies and their antigen binding fragments in human colon multicellular tumor spheroids.Cancer Res.,47, 1627–1633

    PubMed  CAS  Google Scholar 

  14. Bagshawe, K. D. (1990). Antibody directed enzyme prodrug therapy.Anal. Proc.,27, 5.

    Article  CAS  Google Scholar 

  15. Springer, C. J., Antoniw, P., Bagshawe, K. D., Searle, F., Bisset, G. M. F. and Jarman, M. (1990). Novel prodrugs which are activated to cytotoxic alkylating agents by carboxypeptidase G2.J. Med. Chem.,33, 677–681

    Article  PubMed  CAS  Google Scholar 

  16. Waldrop, M. M. (1990). The reign of trial and error draws to a close.Science,247, 28–29

    Article  PubMed  CAS  Google Scholar 

  17. Denny, W. A. (1988). New directions in the design and evaluation of anticancer drugs.Drug Design Deliv.,3, 99– 124

    CAS  Google Scholar 

  18. Bishop, J. M. (1987) The molecular genetics of cancer. Science, 235, 305 - 310

    Article  PubMed  CAS  Google Scholar 

  19. Weinberg, R. A. (1987). The action of oncogenes in the cytoplasm and nucleus.Science,230, 770– 776

    Article  Google Scholar 

  20. Weinstein, I. B. (1987). Growth factors, oncogenes and multi-stage carcinogenesis.J. Cell. Biochem.,33, 312–324

    Article  Google Scholar 

  21. Stein, C. A. and Cohen, J. S. (1988). Oligodeoxynucleotides as inhibitors of gene expression: a review.Cancer Res.,48, 2659–2668

    PubMed  CAS  Google Scholar 

  22. Rothenburg, M., Johnson, G., Laughlin, C., Green, I., Cradock, J., Sarver, N. and Cohen, J. S. (1989). Oligodeoxynucleotides as inhibitors of gene expression: therapeutic implications.J. Natl. Cancer Inst.,81, 1539–1544

    Article  Google Scholar 

  23. Lown, J. W. (1988). Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer drugs and potential cellular probes.Anti-Cancer Drug Design,3, 25–40

    PubMed  CAS  Google Scholar 

  24. Shiraishi, T., Owada, M. K., Tatsuka, M., Yamashita, T., Wanatabe, K. and Kakunaga, T. (1989). Specific inhibitors of tyrosine-specific tyrosine kinases: properties of 4-hydroxycinnamamidein vitro.Cancer Res.,49, 2374– 2378

    PubMed  CAS  Google Scholar 

  25. Gescher, A. and Dale, L. L. (1989). Protein kinase C: a novel target for rational anti-cancer drug design?Anti-Cancer Drug Design,4, 93–105

    PubMed  CAS  Google Scholar 

  26. Grindey, G. B. (1990). Current status of cancer drug development: failure or limited success?Cancer Cells,2, 163–171

    PubMed  CAS  Google Scholar 

  27. Folkman, J., Watson, K., Ingber, D. and Hanahan, D. (1988). Induction of angiogenesis during the transition from hyperplasia to neoplasia.Nature (London),339, 58–61.

    Article  Google Scholar 

  28. Vaupel, P., Kallinowski, F. and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review.Cancer Res.,49, 6449– 6465

    PubMed  CAS  Google Scholar 

  29. Jain, R. K. (1989). Delivery of novel therapeutic agents in tumors: physiological barriers and strategies.J. Natl. Cancer Inst.,81, 570– 576

    Article  PubMed  CAS  Google Scholar 

  30. Durand, R. E. (1989). Distribution of and activity of antineoplastic drugs in a tumor model.J. Natl. Cancer Inst.,81, 146–152

    Article  PubMed  CAS  Google Scholar 

  31. Casciari, J. J., Sotirchos, S. V. and Sutherland,R. M. (1988). Glucose diffusivity in multicellular tumor spheroids.Cancer Res.,48, 3905–3909

    PubMed  CAS  Google Scholar 

  32. McFadden, R. and Kwok, C. C. (1988). Mathematical model of simultaneous diffusion and binding of antitumor antibodies in multicellular human tumor spheroids.Cancer Res.,48, 4032– 4037

    PubMed  CAS  Google Scholar 

  33. Curt, G. A., Clendeninn, N. J. and Chabner, B. A. (1984). Drug resistance in cancer.Cancer Treatment Rep.,68, 87–99

    CAS  Google Scholar 

  34. Harris, A.L. and Hickson, I. D. (1989). Drug resistance, DNA repair and growth factors. In Kessel, D. (ed.)Resistance to Antineoplastic Drugs. ( Boca Raton: CRC Press )

    Google Scholar 

  35. Park, J.-G., Kramer, B. X., Lai, S.-L., Goldstein, L. J. and Gazdar, A. F. (1990). Chemo-sensitivity patterns and expression of human multidrug resistance-associated MDR1 gene by human gastric and colorectal carcinoma cell lines.J. Natl. Cancer Inst.,82, 193–198

    Article  PubMed  CAS  Google Scholar 

  36. Georges, E., Bradley, G., Gariepy, J. and Ling, V. (1990). Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies.Proc. Natl. Acad. Sci. (USA),87, 152–156

    Article  CAS  Google Scholar 

  37. Endicott, J. A. and Ling, V. (1989). The biochemistry of P-glycoprotein-mediated multidrug resistance.Ann. Rev. Biochem.,58, 351–375

    Article  Google Scholar 

  38. Selassie, C. D., Hansch, C. and Khwaja, T. A. (1990) Structure-activity relationships of antineoplastic agents in multidrug resistance.J. Med. Chem.,33, 1914–1919

    Article  PubMed  CAS  Google Scholar 

  39. Hofsli, E. and Nissen-Meyer, J. (1990). Reversal of multidrug resistance by lipophilic drugs.Cancer Res.,50, 3997–4002

    PubMed  CAS  Google Scholar 

  40. Zamora, J. M., Pearce, H. L. and Beck, W. T. (1988). Physicochemical properties shared by compounds that modulate multidrug resistance in human leukemic cells.Mol. Pharmacol.,33, 454– 462

    PubMed  CAS  Google Scholar 

  41. Pearce, H. L., Winter, M. A. and Beck, W. T. (1990). Structural characteristics of compounds that modulate P-glycoprotein-associated multidrug resistance.Adv. Enzyme Regul.,30, 357–373

    Article  PubMed  CAS  Google Scholar 

  42. Wilman, D. E. V. and Connors, T. A. (1983). In Neidle S. and Waring, M. J. (eds.)Molecular Aspects of Anticancer Drug Action, p. 234. ( London: MacMillan )

    Google Scholar 

  43. Hansson, J., Lewensohn R., Ringborg. U. and Nilsson, B. (1987). Formation and removal of DNA cross-links induced by melphalan and nitrogen mustard in relation to drug-induced cytotoxicity in human melanoma cells.Cancer Res.,47, 2631–2637

    PubMed  CAS  Google Scholar 

  44. Peiper, R. O., Futscher, B. W., and Erickson, L. C. (1989). Transcription-terminating lesions induced by Afunctional alkylating agentsin vivo.Carcinogenesis,10, 1307–1314

    Article  Google Scholar 

  45. Singer, B. (1975). The chemical effects of nucleic acid alkylation, and their relationship to mutagenesis and carcinogenesis.Prog. Nucl. Acids Res. Mol. Biol.,15, 219–284

    Article  CAS  Google Scholar 

  46. Kohn, K. W., Hartley, J. A. and Mattes, W. B. (1987). Mechanisms of DNA sequence-selective alkylation of guanine N7 positions by nitrogen mustards.Nucleic Acids Res.,15, 10531–10549

    Article  PubMed  CAS  Google Scholar 

  47. Perehia, D. and Pullman, A. (1979). The molecular electrostatic potential of the B-DNA helix. II. The region of the adenine-thymine base pair.Theor. Chim. Acta,50, 351–354

    Article  Google Scholar 

  48. Millard, J. T., Raucher, S. and Hopkins, P. B. (1990). Mechlorethamine crosslinks deoxyguanosine residues at 5’-GNC sequences in duplex DNA fragments.J. Am. Chem. Soc.,112, 2459–2460

    Article  CAS  Google Scholar 

  49. Butour, J. L. and Johnson, N. P. (1986). Chemical reactivity of monofunctional platinum-DNA adducts.Biochemistry,25, 4534–4539

    Article  PubMed  CAS  Google Scholar 

  50. Teng, S. P., Woodson, S. A. and Crothers, D. M. (1989). DNA sequence specificity of mitomycin C cross-linking.Biochemistry,28, 3901–3907

    Article  PubMed  CAS  Google Scholar 

  51. Brendel, M. and Ruhland, A. (1984). Relationship between functionality and genetic toxicology of selected DNA-damaging agents.Mutat. Res.,133, 51–85

    PubMed  CAS  Google Scholar 

  52. Prakash, A. S., Denny, W. A., Gourdie, T. A., Valu, K. K., Woodgate, P. D. and Wakelin, L. P. G. (1990). DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by DNA-intercalating acridine-linked aniline mustards.Biochemistry,29, 9799–9807

    Article  PubMed  CAS  Google Scholar 

  53. Suzukake, K., Vistica, B. P. and Vistica, D. T. (1983). Dechlorination of L-phenylalanine mustard by sensitive and resistant tumor cells and its relationship to intracellular glutathione content.Biochem. Pharmacol.,32, 165–167

    Article  PubMed  CAS  Google Scholar 

  54. Schmahl, D. (1986). Carcinogenicity of anticancer drugs and especially alkylating agents. In Schmahl, D. and Kaldor, J. M. (eds.)Carcinogenicity of Alkylating Cytostatic Drugs, pp. 143–146. IARC Sci. Publ. No. 78. (Lyon: IARC )

    Google Scholar 

  55. Creech, H. J., Preston, R. K., Peck, R. M., O’Connell, A. S. and Ames, B. N. (1972). Antitumor and mutagenesis properties of a variety of heterocyclic nitrogen and sulfur mustards.J. Med. Chem.,15, 739–746

    Article  PubMed  CAS  Google Scholar 

  56. Koyama, M., Takahashi, K., Chou, T.-C., Darzynkiewicz, Z., Kapuscinski, J., Kelly, T. T. and Wanatabe, K. A. (1989). Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives of chrysophanol and emodin.J. Med. Chem.,32, 1594–1599

    Article  PubMed  CAS  Google Scholar 

  57. Gourdie, T. A., Valu, K. K., Gravatt, G. L., Boritzki, T. J., Baguley, B. C., Wilson, W. R., Woodgate, P. D. and Denny, W. A. (1990). DNA-directed alkylating agents. 1. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the reactivity of the mustard.J. Med. Chem.,33, 1177–1186

    Article  PubMed  CAS  Google Scholar 

  58. Valu, K. K., Gourdie, T. A., Gravatt, G. L., Boritzki, T. J., Woodgate, P. D., Baguley, B. C. and Denny, W. A. (1990). DNA-directed alkylating agents. 3. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the length of the linker chain.J. Med. Chem.,33, 3014–3019

    Article  PubMed  CAS  Google Scholar 

  59. Sundquist, W. I., Bancroft, D. P. and Lippard, S. J. (1990). Synthesis, characterization and biological activity ofcis-diammineplatinum (II) complexes of the DNA intercalators 9-aminoacridine and chloroquine.J. Am. Chem. Soc.,112, 1590–1596

    Article  CAS  Google Scholar 

  60. Palmer, B. D., Lee, H. H., Johnson, P., Baguley, B. C., Wickham, G., Wakelin, L. P. G., McFadyen, W. D. and Denny, W. A. (1990). DNA-directed alkylating agents. 2. Synthesis and biological activity of platinum complexes linked to 9-anilinoacridine.J. Med. Chem.,33, 3008–3014

    Article  PubMed  CAS  Google Scholar 

  61. Kopka, M., Yoon, C., Goodsell, D., Pjura, P. and Dickerson, R. E. (1985). The molecular origin of DNA-drug specificity in netropsin and distamycin.Proc. Natl. Acad. Sci. (USA),82, 1376–1380

    Article  CAS  Google Scholar 

  62. Leupin, W., Chazin, W., Hyberts, S., Denny, W. A., Stewart, G. M. and Wuthrich, K. (1986). 1D and 2D NMR study of the complex between the decadeoxyribonucleotide d(GCATTAATGC)2 and a minor groove binding drug.Biochemistry,25, 5902–5910

    Article  PubMed  CAS  Google Scholar 

  63. Denny, W. A., Atwell, G. J., Baguley, B. C. and Cain, B. F. (1979). Potential antitumor agents. Part 29. QSAR for the antileukemic bisquaternary ammonium heterocycles.J. Med. Chem.,22, 134–151

    Article  PubMed  CAS  Google Scholar 

  64. Prakash, A. S., Valu, K. K., Wakelin, L. P. G. and Denny, W. A. (1991). Synthesis and antitumour activity of the spatially-separated mustard bis-N,N’-[3-(N-(2-chloroethyl)-N- ethyl)amino-5-((N,N-dimethylamino)methyl)aminophenyl]-1,4-benzenedicarboxamide, which alkylates DNA exclusively at adenines in the minor groove.Anticancer Drug Design,6, 195–206

    CAS  Google Scholar 

  65. Baker B. F. and Dervan, P. B. (1989). Sequence-specific cleavage of DNA by N-bromoacetyldistamycin. Product and kinetic analyses.J. Am. Chem. Soc.,111, 2700–2712

    Article  CAS  Google Scholar 

  66. Arcamone, F. M., Animati, F., Barbieri, B., Configliacchi, E., D’Alessio, R., Geroni, C., Giuliani, F. C., Lazzari, E., Menozzi, M., Mongelli, N., Penco, S. and Verini, M.A. (1989). Synthesis, DNA-binding properties and antitumor activity of novel distamycin derivatives.J. Med. Chem.,32, 774–778

    Article  PubMed  CAS  Google Scholar 

  67. Krowicki, K., Balzarini, J., De Clercq, E., Newman, R. A. and Lown, J. W. (1988). Novel DNA minor groove binding alkylators: design, synthesis and biological activity.J. Med. Chem.,31, 341–345

    Article  PubMed  CAS  Google Scholar 

  68. Gravatt, G. L., Baguley, B. C., Wilson, W. R. and Denny, W. A. (1991). DNA-directed alkylating agents. 4. 4-Anilinoquinoline-based minor groove-directed aniline mustards.J. Med. Chem.,34, 1552–1560

    Article  PubMed  CAS  Google Scholar 

  69. O’Connor, C. J., Denny, W. A. and Fan, J.-Y. (1991). Alkylation of nucleic acids by DNA- targeted 4-anilinoquinolinium aniline mustards: kinetic studies.Chem. Biol. Int.,11, 223–241

    Article  Google Scholar 

  70. Hurley, L. H., Lee, C.-S., McGovren, J. P., Warpehoski, M. A., Mitchell, M. A., Kelly, R. C. and Aristoff, P.A. (1988). Moleleular basis for sequence-specific DNA alkylation by CC-1065.Biochemistry,21, 3886–3892

    Article  Google Scholar 

  71. . Hurley, L. H. and Needham-vanDevanter, D. R. (1986). Covalent binding of antitumor antibiotics in the minor groove of DNA. Mechanism of action of CC-1065 and the pyrrolo(1,4)benzodiazepines.Acc. Chem. Res.,19, 230–237

    Article  CAS  Google Scholar 

  72. Tang, M. S., Lee, C.-S., Doisy, R., Ross, L., Needham-vanDevanter, D. R. and Hurley, L. H. (1988). Recognition and repair of the CC-1065-(N3-adenine)-DNA adduct by the UVR-ABC nucleases.Biochemistry,27, 893–901

    Article  PubMed  CAS  Google Scholar 

  73. Warpehoski, M. A. and Hurley, L. H. (1988). Sequence selectivity of DNA covalent modification.Chem. Res. Tox.,1, 315–333

    Article  CAS  Google Scholar 

  74. . Li, L. H., Kelly, R. C., Warpehoski, M. A., McGovren, I. P., Gebhard, I. and Dekoning, T. F. (1991). Adozelesin, a selected lead among cyclopropylpyrroloindole analogues of the DNA binding antibiotic CC-1065.Invest. New Drugs,9, 137–148

    Article  PubMed  CAS  Google Scholar 

  75. . Farber, S., D’Angio, G., Evans, A. and Mitus, A. (1960). Clinical studies of actinomycin D with special reference to Wilms’ tumor in children.Ann. N.Y. Acad. Sci.,89, 421–425

    Article  PubMed  CAS  Google Scholar 

  76. Weiss, R. B., Sarosy, G., Clagett-Carr, K., Russo, M. and Leyland-Jones, B. (1986). Anthracycline analogues: past, present and future.Cancer Chemother. Pharmacol.,18, 185–197

    Article  PubMed  CAS  Google Scholar 

  77. Ghione, M. (1975). Development of adriamycin (NSC 123127).Cancer Chemother. Rep.,58, 83–89

    Google Scholar 

  78. Mathe, G., Hayat, M. and de Vassal, F. (1970). Methoxy-9-ellipticine lactate. III. Clinical screening: its action in acute myeloid leukemia.Eur. J. Clin. Biol. Res.,15, 541–547

    CAS  Google Scholar 

  79. Denny, W. A., Baguley, B. C., Cain, B. F. and Waring, M. J. (1983). Antitumour acridines. InMolecular Aspects of Anticancer Drug Action, pp. 1–34. Neidle, S. and Waring, M. J. (eds.) ( London: MacMillan )

    Google Scholar 

  80. Von Hoff, D. D., Myers, W., Kuhn, J., Sandbach, J. F., Pocelinko, R., Clark, G. and Coltman, C. A. (1981). Phase I clinical investigation of 9,10-anthracenedicarboxaldehyde bis[(4,5-dihydro-1H-imidazol-2-yl)hydrazone] dihydrochloride (CL 216942).Cancer Res.,41, 3118–3121

    Google Scholar 

  81. Cornbleet, M. A., Stuart-Harris, R. C., Smith, I. E., Coleman, R. E., Rubens, R. D., McDonald, M., Mouridsen, H. T., Rainer, H., van Oosterom, A. T. and Smyth, J. F. (1984). Mitoxantrone in the treatment of advanced breast cancer.Eur. J. Cancer Clin. Oncol.,20, 1141–1147

    Article  PubMed  CAS  Google Scholar 

  82. Clarysse, A., Brugarolas, A., Siegenthaler, P., Abele, R., Cavalli, F., de Jager, R., Renard, G., Rozencweig, M. and Hansemn, H. H. (1984). Phase II study of 9-hydroxy-2N-methylellipticinium acetate.Eur. J. Cancer Clin. Oncol.,20, 243–247

    Article  PubMed  CAS  Google Scholar 

  83. Ames, M. M. and Loprizini, C. L. (1988). Preliminary pharmacologic and toxicologic data from a Phase I clinical trial of oxantrazole incorporating a pharmacologically-guided dose escalation.Proc. Am. Assoc. Cancer Res.,29, 196

    Google Scholar 

  84. Kris, M. G., Gralla, R. J., Berger, M. Z., Marks, L. A., Potanovich, L. M., DiMaggio, J. J. and Heelan, R. T. (1989). Phase II trial of amonafide in patients with advanced non-small-cell lung cancer.Proc. Am. Assoc. Cancer Res.,30, 270

    Google Scholar 

  85. . Harman, G. S., Craig, J. B., Kuhn, J. C., Luther, J. S., Turner, J. N., Weiss, G. R., Tweedy, D. A., Koeller, J., Tuttle, R.C., Lucas, S. V., Wargin, W. Whisnant, J. K. and von Hoff, D. D. (1988). Phase I and clinical pharmacology trial of crisnatol (BW A770U mesylate) using a monthly single-dose schedule).Cancer Res.,48, 4706–4710

    PubMed  CAS  Google Scholar 

  86. Denny, W. A., Twigden, S. J. and Baguley, B. C. (1986). Steric constraints for DNA binding and biological activity in the amsacrine series.Anti-Cancer Drug Design,1, 125–132

    PubMed  CAS  Google Scholar 

  87. Atwell, G. J., Bos, C. D., Baguley, B. C. and Denny, W. A. (1988). Potential antitumor agents. 56. ‘Minimal’ DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides.J. Med. Chem.,31, 1048–1052

    Article  PubMed  CAS  Google Scholar 

  88. Baguley, B. C., Denny, W. A., Atwell, G. J. and Cain, B. F. (1981). Potential antitumor agents. Part 35. Quantitative relationships between antitumor (LI210) potency and DNA binding for 4’-(9-acridinylamino)methanesulfon-m-anisidide analogues.J. Med. Chem.,24, 520–525

    Article  PubMed  CAS  Google Scholar 

  89. Le Pecq, J-B., Dat-Xuong, N., Gosse, C. and Paoletti, C. (1974). A new antitumoral agent; 9-hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs.Proc. Natl. Acad. Sci. USA,71, 5078–5084

    Article  PubMed  Google Scholar 

  90. . Hartley, J. A., Reszko, K., Zuo, E. T., Wilson, W. D., Morgan, A. R. and Lown, J. W. (1988). Characteristics of the interaction of anthrapyrazole anticancer agents with deoxyribonucleic acids; structural requirements for DNA binding, intercalation and photosensitisation.Mol. Pharmacol.,33, 265–271

    PubMed  CAS  Google Scholar 

  91. Valentini, L., Nicolella, V., Vannini, E., Menuzzi, M., Penco, S. and Arcamone, F.M. (1985). Association of anthracycline derivatives with DNA: a fluorescence study.II Farmaco Ed. Sci.,40, 376–382

    Google Scholar 

  92. Bair, K.W., Tuttle, R. L., Knick, V. C, Cory, M. and McKee, D. D. (1990). (1-Pyrenylmethyl)amino alcohols, a new class of antitumor DNA intercalators. Discovery and initial sidechain structure-activity studies.J. Med. Chem.,33, 2385–2393

    Article  PubMed  CAS  Google Scholar 

  93. Esnault, C., Roques, B. P., Jacquemin-Sablon, A. and Le Pecq, J.-B. (1984). Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L1210 cells.Cancer Res.,44, 4355–4360

    PubMed  CAS  Google Scholar 

  94. Cory, M., McKee, D. D., Kagan, J., Henry, D. W. and Miller, J. A. (1985). Design, synthesis and DNA binding properties of bifunctional intercalators. Comparison of polymethylene and diphenylether chains connecting phenanthridines.J. Am. Chem. Soc.,107, 2528–2536

    Article  CAS  Google Scholar 

  95. Denny, W.A., Atwell, G. J., Baguley, B. C. and Wakelin, L. P. G. (1985). Potential antitumor agents. 44. Synthesis and antitumor activity of new classes of diacridines: importance of linker chain rigidity for DNA binding kinetics and biological activity.J. Med. Chem.,28, 1568–1574

    Article  PubMed  CAS  Google Scholar 

  96. Wakelin, L. P. G. (1986). Polyfunctional DNA intercalators.Med. Res. Rev.,6, 275–340

    Article  PubMed  CAS  Google Scholar 

  97. Capelle, N., Barbet, J., Dessen, P., Blanquet, S., Roques, P. B. and Le Pecq, J.-B. (1979). Deoxyribonucleic acid bifunctional intercalators: kinetic investigation of the binding of several acridine dimers to deoxyribonucleic acid.Biochemistry,18, 3354–3362

    Article  PubMed  CAS  Google Scholar 

  98. Becker, M. M. and Dervan, P. B. V. (1979). Molecular recognition of nucleic acids by small molecules. Binding affinity and structural specificity of bis(methidium)spermine.J. Am. Chem. Soc.,101, 3664–3666

    Article  CAS  Google Scholar 

  99. Kuhn, J. G., von Hoff, D. D., Hersch, M., Melink, T., Clark, G. M., Weiss, G. R. and Coltman, C. A. (1989). Phase I trial of echinomycin (NSC 526417), a bifunctional intercalating agent, administered by 24-hour continuous infusion.Eur. J. Cancer Clin. Oncol.,25, 797–803

    Article  PubMed  CAS  Google Scholar 

  100. Segal-Bendirjian, E., Coulaud, D., Roques, B. P. and Le Pecq, J.-B. (1988). Selective loss of mitochondrial DNA after treatment of cells with ditercalinium (NSC 335153), an antitumor bis-intercalating agent.Cancer Res.,48, 4982–4992

    Google Scholar 

  101. Esnault, C., Brown, S. C, Segal-Bendirjian, E., Coulaud, D., Mishal, Z., Roques, B. P. and Le Pecq, J-B. (1990). Selective alteration of mitochondrial function by ditercalinium (NSC 335153), a DNA bisintercalating agent.Biochem. Pharmacol.,39, 109–122

    Article  PubMed  CAS  Google Scholar 

  102. Atwell, G. J., Rewcastle, G. W., Baguley, B. C. and Denny, W. A. (1987). Potential antitumor agents. 50.In vivosolid tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide.J. Med. Chem.,30, 664–669

    Article  PubMed  CAS  Google Scholar 

  103. Rewcastle, G. W., Denny, W. A. and Baguley, B. C. (1987). Potential antitumor agents. 51. Synthesis and antitumor activity of phenazine-1-carboxamides.J. Med. Chem.,30, 843–851

    Article  PubMed  CAS  Google Scholar 

  104. Atwell, G. J., Baguley, B. C. and Denny, W. A. (1989). Potential antitumor agents.57. 2-Phenylquinoline-8-carboxamides as ‘minimal’ DNA-intercalating antitumor agents within vivosolid tumor activity.J. Med. Chem.,32, 396–401

    Article  PubMed  CAS  Google Scholar 

  105. . Denny, W. A., Baguley, B. C. and Rewcastle, G. W. (1990). Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of ‘minimal’ DNA-intercalating agent which may not act via topoisomerase II.J. Med. Chem.,33, 814– 819

    Article  PubMed  CAS  Google Scholar 

  106. Palmer, B. D., Lee, H. H., Baguley, B. C. and Denny, W. A. (1992). Potential antitumor agents. 64. Synthesis and antitumor evaluation of dibenzo[l,4]dioxin-1-carboxamides, a new class of weakly-binding DNA-intercalating agents.J. Med. Chem. 35, 258–266

    Article  PubMed  Google Scholar 

  107. Feigon, J., Denny, W. A., Leupin, W. and Kearns, D. R. (1984). The interactions of antitumor drugs with natural DNA: a 1H NMR study of binding mode and kinetics.J. Med. Chem.,27, 450–465

    Article  PubMed  CAS  Google Scholar 

  108. Muller, W.. and Crothers, D. M. (1968). Studies of the binding of actinomycin D and related compounds to DNA.J. Mol. Biol.,35, 251–290

    Article  PubMed  CAS  Google Scholar 

  109. Wakelin, L. P. G., Atwell, G. J., Rewcastle, G. W. and Denny, W. A. (1987). Relationships between DNA binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents.J. Med. Chem.,30, 855–862

    Article  PubMed  CAS  Google Scholar 

  110. Krishnamoorthy, C. R., Yen, S.-F., Smith, J. C., Lown, J. W. and Wilson, W. D. (1986). Stopped-flow kinetic analysis of the interaction of anthraquinone anticancer drugs with calf thymus DNA, poly[d(G-C)].poly[d(G-C)] and poly[d(A-T).poly[d(A-T)].Biochemistry,25, 5933–5940

    Article  PubMed  CAS  Google Scholar 

  111. Denny, W. A. and Wakelin, L. P. G. (1990). Kinetics of the binding of mitoxantrone and analogues to DNA: relationship to binding mode and antitumour activity.Anti-Cancer Drug Design,5, 189–200

    PubMed  CAS  Google Scholar 

  112. Denny, W. A. and Wakelin, L. P. G. (1987). Mode and kinetics of binding of the antitumour agent bisantrene.Anti-Cancer Drug Design,2, 71–77

    PubMed  CAS  Google Scholar 

  113. Elliott, J. A., Wilson,W. D., Shea, R. G., Hartley, J. A., Reszka, K. and Lown, J. W. (1989). Interaction of bisantrene anti-cancer agents with DNA: footprinting, structural requirements for DNA unwinding, kinetics and mechanism of binding and correlation of structural and kinetic parameters with anti-cancer activity.Anti-Cancer Drug Design,3, 271–282

    Google Scholar 

  114. Fox, K. R., Brasset, C. and Waring, M. J. (1985). Kinetics of dissociation of nogalamycin from DNA: comparison with other anthracycline antibiotics.Biochim. Biophys. Acta,840, 383–392

    PubMed  CAS  Google Scholar 

  115. Searle, M. S., Hall, J. G., Denny, W. A. and Wakelin, L. P. G. (1988). NMR studies of the interaction of the antibiotic nogalamycin with the hexadeoxyribonucleotide duplex d(5’-GCATGC)2,Biochemistry,27, 4340–4349

    Article  PubMed  CAS  Google Scholar 

  116. Gao, Y-G., Liaw, Y.-C., Robinson, H. and Wang, H.-J. (1990). Binding of the antitumor drug nogalamycin and its derivatives to DNA: structural comparison.Biochemistry,29, 10307–10316

    Article  PubMed  CAS  Google Scholar 

  117. Wakelin, L. P. G., Chetcuti, P. and Denny, W. A. (1990). Kinetic and equilibrium studies of amsacrine-4-carboxamides: a class of asymmetric DNA-intercalating agents which must bind by threading through the DNA helix.J. Med. Chem.,33, 2039–2044

    Article  PubMed  CAS  Google Scholar 

  118. . Zwelling, L. A., Michaels, S., Erickson, L. C., Ungerleider, R. S., Nichols, M. and Kohn, K. W. (1981). Protein-associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxyribonucleic acid intercalating agents 4’-(9-acridinylamino)methanesulfon-m- anisidide and adriamycin.Biochemistry,20, 6553–6563

    Article  PubMed  CAS  Google Scholar 

  119. Drlica, K. and Franko, R. J. (1988). Inhibitors of DNA topoisomerases.Biochemistry,27, 2253–2259

    Article  PubMed  CAS  Google Scholar 

  120. Heck, M. M. S., Hittelman, W. N. and Earnshaw, W. C. (1988). Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle.Proc. Natl. Acad. Sci. USA,85, 1086–1090

    Article  PubMed  CAS  Google Scholar 

  121. Robbie, M. A., Baguley, B. C., Denny, W. A., Gavin, J. G., and Wilson, W. R. (1988). Mechanism of resistance of non-cycling mammalian cells to 4’-(9-acridinyl- amino)methanesulfon-m-anisidide (m-AMSA): comparison of uptake, metabolism and DNA breakage in log- and plateau-phase Chinese hamster fibroblast cell cultures.Cancer Res.,48, 310–319

    PubMed  CAS  Google Scholar 

  122. Stahelin, H. and von Wartburg, A. (1989). From podophyllin glucoside to etoposide.Prog. Drugs Res.,33, 169– 266

    Article  CAS  Google Scholar 

  123. van Maanen, J. M. S., Retel, J., de Vries, J. and Pinedo, H. M. (1988). Mechanism of action of antitumor drug etoposide: a review.J. Natl. Cancer Inst.,80, 1526–1533

    Article  PubMed  Google Scholar 

  124. Huff, A. C. and Kreuzer, K. N. (1990). Evidence for a common mechanism of action for antitumor and antibacterial agents that inhibit type II topoisomerases.J. Biol. Chem.,265, 20496–20505

    PubMed  CAS  Google Scholar 

  125. Abraham, Z. H. L., Cutbush, S. D., Kuroda, R., Neidle, N., Acheson, R. M. and Taylor, G. N. (1985). Nucleic acid binding drugs. Part 12. X-ray crystallographic and conformational studies on the anticancer drugm-AMSA and its mesyl derivative.J. Chem. Soc. (Perkin II), 461–466

    Google Scholar 

  126. Chen, K. X., Gresh, N. and Pullman, B. (1988). Groove selectivity in the interaction of 9-aminoacridine-4-carboxamide antitumor agents with DNA.Nucleic Acids Res.,16, 3061–3074

    Article  PubMed  CAS  Google Scholar 

  127. Chung, T. D. Y., Drake, F. H. Tan, S. R., Per, M., Crooke, S. T. and Mirabelli, C. K. (1989). Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase isozymes.Proc. Natl. Acad. Sci. USA,86, 9431–9435

    Article  PubMed  CAS  Google Scholar 

  128. Drake, F. H., Hofmann, G. A., Bartus, H. F., Mattern, M. R., Crooke, S. T. and Mirabelli, C. K. (1989). Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II.Biochemistry,28, 8154–8160

    Article  PubMed  CAS  Google Scholar 

  129. Rewcastle, G. W., Baguley, B. C., Atwell, G. J. and Baguley, B. C. (1987). Potential antitumor agents. 52. Carbamate analogues of amascrine within vivoactivity against multidrug-resistant P388 leukemia.J. Med. Chem.,30, 1576–1581

    Article  PubMed  CAS  Google Scholar 

  130. Baguley, B. C., Holdaway, K. M. and Fray, L. M. (1990). Design of DNA intercalators to overcome topoisomerase H-mediated multidrug-resistance.J. Natl. Cancer Inst.,82, 398–402

    Article  PubMed  CAS  Google Scholar 

  131. Baguley, B. C. and Finlay, G. J. (1988). Derivatives of amsacrine: determinants required for high activity against the Lewis lung carcinoma.J. Natl. Cancer Inst.,80, 195– 199

    Article  PubMed  CAS  Google Scholar 

  132. Scudder, S. A., Brown, J. M. and Sikic, I. B. (1988). DNA crosslinking and cytotoxicity of the alkylating cyanomorpholide derivative of doxorubicin in multidrug-resistant cells.J. Natl. Cancer Inst.,80, 1294–1298

    Article  PubMed  CAS  Google Scholar 

  133. Mukherjee, T., Land, E. J., Swallow, A. J. and Bruce, J. M. (1989). One-electron reduction of adriamycin and daunomycin: short-term stability of the semiquinones.Arch. Biochem. Biophys. 272, 450–458

    Article  PubMed  CAS  Google Scholar 

  134. Jurlina, J. L., Lindsay, A., Baguley, B. C. and Denny, W. A. (1987). Redox chemistry of the 9-anilinoacridine class of antitumor agents.J. Med. Chem.,30, 473–480

    Article  PubMed  CAS  Google Scholar 

  135. Kolodziejczyk, P., Reszka, K. and Lown, J. W. (1988). Enzymatic oxidative activation and transformation of the antitumor agent mitoxantrone.Free Radical Biol. Med.,5, 13–25

    Article  CAS  Google Scholar 

  136. Bernadou, J., Meunier, G., Paoletti, C. and Meunier, B. (1983).o-Quinone formation in the biochemical oxidation of the antitumor drug N(2)-methyl-9-hydroxyellipticinium acetate.J. Med. Chem.,26, 574–579

    Article  PubMed  CAS  Google Scholar 

  137. Long, B. H., Musial, S. T. and Brattain, M. G. (1984). Comparison of cytotoxicity and DNA breakage activity of congeners of podophyllotoxin including VP16-213 and VM26: a quantitative structure-activity relationship.Biochemistry,23, 1183–1188

    Article  PubMed  CAS  Google Scholar 

  138. Schwartz, H. S. (1983). Mechanisms of selective toxicity of adriamycin, daunomycin and related anthracyclines. In Neidle, S. and Waring, M. J. (eds)Molecular Mechanisms of Anticancer Drug Action, p. 93. ( London: MacMillan )

    Google Scholar 

  139. Ferrer-Mantiel, A. V., Ferraught, J. A. and Gonzalez-Ros, J. M. (1990). Role of membrane lipids in the interaction of daunomycin with plasma membranes of tumor cells. Implications in drug resistance phenomena.Biochemistry,29, 7275–7282

    Article  Google Scholar 

  140. Adams, D. J., Watkiris, P. J., Knick, V. C., Tuttle, R. L. and Bair, K. W. (1990). Evaluation of arylmethylaminopropanediols by a novelin vitropharmacodynamic assay: correlation with antitumor activityin vivo.Cancer Res.,50, 3663–3669

    PubMed  CAS  Google Scholar 

  141. Umezawa, H., Maeda, K., Takeuchi, T. and Okami, Y. (1966). New antibiotics, bleomycin A and BJ. Antibiot. Ser. A.,19, 200–209

    CAS  Google Scholar 

  142. Umezawa, H. (1987). Studies on antibiotics and enzyme inhibitors.Rev. Infect. Dis.,9, 147–164

    Article  PubMed  CAS  Google Scholar 

  143. Hecht, S. M. (1990). The chemistry of activated bleomycin. In: Wilman, D. E. V. (ed.)The Chemistry of Antitumour Agents( London: Blackie ) p. 395

    Chapter  Google Scholar 

  144. Rabow, L. E., Stubbe, J. and Kozarich, J. W. (1990). Identification and quantitation of the lesion accompanying base release in bleomycin-mediated DNA degradation.J. Am. Chem. Soc.,112, 3196–3203

    Article  CAS  Google Scholar 

  145. Stubbe, J. and Kozarich, J. W. (1987). Mechanism of bleomycin-induced DNA degradation.Chem. Rev.,87, 1107–1136

    Article  CAS  Google Scholar 

  146. Vloon, W. J. Kruk, C., Pandit, U., Hofs, H. and McVie, J. (1987). Synthesis and properties of side-chain modified bleomycins.J. Med. Chem.,30, 20–24

    Article  PubMed  CAS  Google Scholar 

  147. Wender, P. A., McKinney, J. A. and Mukai, C. (1990). General methodology for the synthesis of neocarzinostatin chromophore analogues: intramolecular chromium-mediated closures for strained-ring synthesis.J. Am. Chem. Soc.,112, 5369–5370

    Article  CAS  Google Scholar 

  148. Edo, K., Mitzukagi, M., Koido, Y., Seto, H., Furihata, K., Otake, N. and Ishida, N. (1985). The structure of neocarzinostatin chromophore possessing a novel bicyclo[7,3,0]dodecadiyne system.Tet. Lett.,26, 331–334

    Article  CAS  Google Scholar 

  149. Lee, S. H. and Goldberg, I. H. (1989). Sequence-selective, strand-selective and directional binding of neocarzinostatin chromophore to oligodeoxyribonucleotides.Biochemistry,28, 1019–1026

    Article  PubMed  CAS  Google Scholar 

  150. Chin, D.-H., Zeng, C.-H., Costello, C. E. and Goldberg, I. H. (1988). Sites in the diyne-ene bicyclic chromophore of neocarzinostatin chromophore responsible for hydrogen abstraction from DNA.Biochemistry,27, 8106–8114

    Article  PubMed  CAS  Google Scholar 

  151. Povirk, L. F. and Goldberg, I. H. (1985). Detection of neocarzinostatin chromo- phoredeoxyribose adducts as exonuclease-resistant sites in defined-sequence DNA.Biochemistry,24, 4035–4040

    Article  PubMed  CAS  Google Scholar 

  152. Myers, A. G., Proteau, P. J. and Handel, T. M. (1988). Stereochemical assignment of neocarzinostatin chromophore. Structures of neocarzinostatin chromophore-methyl thioglycolate adducts.J. Am. Chem. Soc.,110, 7212–7214

    Article  CAS  Google Scholar 

  153. Lee, M. D., Dunne, T. S., Siegel, M. M., Chang, C. C., Morton, G. O. and Borders, D. B. (1987). Calicheamicins, a novel family of antitumour antibiotics. 1. Chemistry and partial structure of calicheamicinγ 11 .J. Am. Chem. Soc.,109, 3464–3466

    Article  CAS  Google Scholar 

  154. Golik, J., Clardy, J., Dubay, G., Groenewold, G., Kawaguchi, H., Konishi, M., Krishnan, B., Ohkuma, H., Saitoh, K. and Doyle, T.W. (1987). Esperamicins, a novel class of potent antitumour antibiotics. Structure of esperamicin X.J. Am. Chem. Soc.,109, 3461–3462

    Article  CAS  Google Scholar 

  155. Zein, N., Poncin, M., Nilakatan, R. and Ellestad, G. A. (1989). Calicheamicinγ 11 and DNA: Molecular recognition process responsible for site specificity.Science,244, 697–699

    Article  PubMed  CAS  Google Scholar 

  156. . Nicolaou, K. C., Zuccarello, G., Ogawa, Y., Schweiger, E. J. and Kumazawa, T. (1988). Cyclic conjugated enediynes related to calicheamicins and esperamicins: calculations, synthesis and properties.J. Am. Chem. Soc.,110, 4866–4868

    Article  CAS  Google Scholar 

  157. Bergman, R. G. (1973). Reactive 1,4-dehydroaromatics.Acc. Chem. Res., 6, 25–31

    Article  CAS  Google Scholar 

  158. Snyder, J. P. and Tipsword, G. E. (1990). Proposal for blending classical and biradical mechanisms in antitumor antibiotics: dynemicin A.J. Am. Chem. Soc.,112, 4040–4042

    Article  CAS  Google Scholar 

  159. Nicolaou, K. C., Maligres, P., Shin, J., de Leon, E. and Rideout, D. (1990). DNA cleavage and antitumor properties of designed molecules with conjugated phosphine oxide-allene-ene-yne functions.J. Am. Chem. Soc.,112, 7825–7826

    Article  CAS  Google Scholar 

  160. Nicolaou, K. C., Skokotas, G., Furuya, S., Suemume, H. and Nicolaou, D. C. (1990). Golfomycin, a novel designed molecule with DNA-cleaving properties and antitumor activity.J. Angew. Chem. Intl. Ed. Engl.,29, 1064–1067

    Article  Google Scholar 

  161. Coleman, C. N. (1988). Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity.J. Natl. Cancer Inst.,80, 310–317

    Article  PubMed  CAS  Google Scholar 

  162. Chaplin, D. J., Olive, P. L. and Durand, R. E. (1987). Intermittent blood flow in a murine tumor: radiobiological effects.Cancer Res.,47, 597–601

    PubMed  CAS  Google Scholar 

  163. Urtasun, R. C., Chapman, J. D., Raleigh, J. A., Franko, A. J. and Koch, C. J. (1986). Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia.Int. J. Radiat. Oncol. Biol. Phys.,12, 1263–1267

    Article  PubMed  CAS  Google Scholar 

  164. Teicher, B. A., Holden, S. A., Al-Achi, A. and Herman, T. S. (1990). Classification of antineoplastic treatments by their differential toxicity towards putative oxygenated and hypoxic tumor subpopulationsin vivoin the FSallC murine fibrosarcoma.Cancer Res.,50, 3339–3344.

    PubMed  CAS  Google Scholar 

  165. Tannock, I. F. and Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic use.Cancer Res.,49, 4373–4384

    PubMed  CAS  Google Scholar 

  166. Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour.Br. J. Cancer,22, 258–272

    Article  PubMed  CAS  Google Scholar 

  167. Denny, W. A. and Wilson, W. R. (1986). Considerations for the design of nitrophenyl mustards as drugs selectively toxic for hypoxic mammalian cellsJ. Med. Chem.,29, 879–887

    Article  PubMed  CAS  Google Scholar 

  168. Adams, G. E. and Stratford, I. J. (1986). Hypoxia-mediated nitroheterocyclic drugs in the radio- and chemotherapy of cancer.Biochem. Pharmacol.,35, 71– 76

    Article  PubMed  CAS  Google Scholar 

  169. Brown, J. M. (1982). The mechanisms of cytotoxicity and chemosensitization by misonidazole and other nitroimidazoles.Int. J. Rad. Oncol. Biol. Phys.,8, 675–682

    Article  CAS  Google Scholar 

  170. McClelland, R. A., Panicucci, R. and Rauth, A. M. (1987). Products of the reductions of 2-nitroimidazoles.J. Am. Chem. Soc.,109, 4308–4314

    Article  CAS  Google Scholar 

  171. Raleigh, J. A. (1985). Binding of misonidazole to hypoxic cells in monolayer and spheroid culture: evidence that a sidechain label is bound as efficiently as a ring label.Br. J. Cancer,51, 229–235

    Article  PubMed  CAS  Google Scholar 

  172. Franko, A. J., Raleigh, J. A., Sutherland, R. G. and Soderlind, K. J. (1989). Metabolic binding of misonidazole to mouse tissues: comparison between labels on the ring and side chain, and the production of tritiated water.Biochem. Pharmacol.,38, 665–670

    Article  PubMed  CAS  Google Scholar 

  173. Panicucci, R., Heal, R., Laderoute, K., Cowan, D. M. S., McClelland, R. A. and Rauth, A. M. (1989). NLP-1, a DNA-intercalating hypoxic cell radiosensitiser and cytotoxinInt. J. Radiat. Oncol Biol Phys.,16, 1039–1043

    Article  PubMed  CAS  Google Scholar 

  174. Kedderis, G. L. and Miwa, G. T. (1988). The metabolic activation of nitroheterocyclic therapeutic agents.Drug Met. Rev.,19, 33–62

    Article  CAS  Google Scholar 

  175. Wardman, P. A. (1984). Radiation chemistry in the clinic: hypoxic cell radiosensitisers for radiotherapy.Radiat. Phys. Chem.,24, 293–305

    CAS  Google Scholar 

  176. Cowan, D. M. S., Panicucci, R., McClelland, R. A. and Rauth, A. M. (1991). Targeting radiosensitisers to DNA by attachment of an intercalating group: nitroimidazole-linked phenanthridines.Radiat. Res.,127, 81–89

    Article  PubMed  CAS  Google Scholar 

  177. Denny, W. A., Roberts, P. B., Anderson, R. F., Brown, J. M. and Denny, W. A. (1991). NLA- 1: a 2-nitroimidazole radiosensitiser targeted to DNA by intercalation.Int. J. Radiat. Oncol Biol Phys.,22, 553–556

    Article  Google Scholar 

  178. . Wilson, W. R., Denny, W. A., Twigden, S. J., Baguley, B. C. and Probert, J. C. (1984). Selective toxicity of nitracrine to hypoxic mammalian cells.Br. J. Cancer,49, 215–223

    Article  PubMed  CAS  Google Scholar 

  179. Denny, W. A., Wilson, W. R., Atwell, G. J., Boyd, M., Pullen, S. M. and Anderson, R. F. (1990). Nitroacridines and nitroquinolines as DNA-affinic hypoxia-selective cyotoxins. In Adams, G.E. (ed.)Activation of Drugs by Redox Processes. NATO Advanced Study Series,198, 149–158

    Chapter  Google Scholar 

  180. Wilson, W. R., Thompson, L. H., Anderson, R. F. and Denny, W. A. (1989). Hypoxia-selective antitumor agents. 2. Electronic effects of 4-substituents on the mechanisms of cytotoxicity and metabolic stability of nitracrine analogues.J. Med. Chem.,32, 31–38

    Article  PubMed  CAS  Google Scholar 

  181. Denny, W. A., Atwell, G. J., Roberts, P. B., Anderson, R. F., Boyd, M., Lock, C. J. L. and Wilson, W. R. (1992). 4-Alkylaminonitroquinolines, a new class of hypoxia-selective cytotoxic agents.J. Med. Chem., submitted

    Google Scholar 

  182. Sebolt, J. S., Scavone, S. V., Pinter, C. D., Hamelehle, K. I., von Hoff, D. D. and Jackson, R. C. (1987). Pyrazoloacridines, a new class of anticancer agents with selectivity against solid tumorsin vivo.Cancer Res.,47, 4299–4304

    PubMed  CAS  Google Scholar 

  183. Alston, T. A., Porter, D. J. T. and Bright, H. J. (1983). Enzyme inhibition by nitro and nitroso compounds.Acc. Chem. Res.,16, 418–424

    Article  CAS  Google Scholar 

  184. . Connors, T. A. (1983) In Reinhoudt, D. N., Connors, T. A., Pinedo, H. M. and van der Poll, K. W. (eds.)Structure-activity Relationships of Antitumor Agents, pp 47–59, ( The Hague: Nijihoff )

    Google Scholar 

  185. Lewis, D. F. V. (1989). Molecular orbital calculations on tumour-inhibitory aniline mustards: QSARs.Xenobiotica,19, 243–251

    Article  PubMed  CAS  Google Scholar 

  186. Palmer, B. D., Wilson, W. R., Pullen, S. M. and Denny, W. A. (1990). Hypoxia-selective antitumor agents. 3. Relationships between structure and cytotoxicity against cultured tumor cells for substituted N,N-bis(2-chloroethyl)anilinesJ. Med. Chem.,33, 112–121

    Article  PubMed  CAS  Google Scholar 

  187. Stratford, I. J., Williamson, C., Hoe, S. and Adams, G. E. (1981). Radiosensitising and cytotoxicity studies with CB 1954 (2,4-dinitro-5-aziridinyl)benzamide.Radiat. Res.,88, 502–509

    Article  PubMed  CAS  Google Scholar 

  188. Sartorelli, A. C. (1988). Therapeutic attack of hypoxic cells of solid tumours: Presidential address.Cancer Res.,48, 775–778

    PubMed  CAS  Google Scholar 

  189. Weissberg, J. B., Son, Y. H., Papac, R. J., Sasaki, C., Fischer, D. B., Lawrence, R., Rockwell, S. A., Sartorelli, A. C. and Fischer, J. J. (1989). Randomised clinical trial of mitomycin C as an adjunct to radiotherapy in head and neck cancer.Int. J. Radiat. Oncol. Biol. Phys.,17, 3–9

    Article  PubMed  CAS  Google Scholar 

  190. Rauth, A. M., Mohindra, J. I. K. and Tannock, I. F. (1983). Activity of mitomycin C for aerobic and hypoxic cellsin vitroandin vivo.Cancer Res.,43, 4154–4358

    PubMed  CAS  Google Scholar 

  191. Borowy-Borowski, H., Lipman, R., Chowdary, D. and Tomasz, M. (1990). Duplex oligodeoxyribonucleotides cross-linked by mitomycin C at a single site: synthesis, properties and cross-link reversibility.Biochemistry,29, 2992–2999

    Article  PubMed  CAS  Google Scholar 

  192. Fisher, J. F. and Aristoff, P. A. (1988). The chemistry of DNA modification by antitumor antibiotics.Prog. Drug Res.,32, 411–498

    PubMed  CAS  Google Scholar 

  193. Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. and Lee, W. W. (1986). SR 4233: a new bioreductive agent with high selective toxicity for mammalian cells.Int. J. Radiat. Oncol Biol Phys.,12, 1239–1242

    Article  PubMed  CAS  Google Scholar 

  194. Baker, M. A., Zeman, E. M., Hirst, V. K. and Brown, J. M. (1988). Metabolism of SR 4233 by Chinese hamster ovary cells: basis of selective hypoxic cytotoxicity.Cancer Res.,48, 5947– 5952

    PubMed  CAS  Google Scholar 

  195. Atwood, J. D. (1989).Inorganic and Organometallic Reaction Mechanisms, p. 87. (Monterey, USA: Brooks/Cole )

    Google Scholar 

  196. Simic, M. and Lilie, J. (1974). Kinetics of ammonia detachment from reduced Co(III) complexes based on conductimetric pulse radiolysis.J. Am. Chem. Soc.,96, 291–292

    Article  CAS  Google Scholar 

  197. Ware, D. C., Siim, B. G., Robinson, K. J., Brothers, P. J., Clark, G. R. and Denny, W. A. (1991). Synthesis and characterisation of aziridine complexes of cobalt (III) and chromium (III) and the X-ray crystal structure oftrans-[Co(Az)4(N02)2]Br.H2O.LiBr.Inorg. Chem.,30, 3750–3757

    Article  CAS  Google Scholar 

  198. Ware, D. C., Wilson, W. R., Denny, W. A. and Rickards, C. E. F. (1991). Design and symthesis of cobalt (III) nitrogen mustard complexes as hypoxia-selective cytotoxins. The X-ray crystal structure of bis(3-chloro-2,4-pentanedionate)RS-N,N-bis(2-chloroethyl) ethylenediamine) cobalt(111)perchlorate, Co[(Clacacc)2(BCE)]ClO4.J. Chem. Soc. Chem. Commun., 1171–1173

    Google Scholar 

  199. Gatenby, R. A., Kessler, H. B., Rosenblum, J. S., Coia, L. R., Moldofsky, P. J., Hartz, W. H. and Brodler, G. J. (1988). Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.,14, 831–838

    Article  PubMed  CAS  Google Scholar 

  200. Adams, G. E., Clarke, E. D., Flockhart, I. R., Jacobs, R. S., Sehmi, D. S., Stratford, I. J., Wardman, P., Watts, M. E., Parrick, J., Wallace, R. G. and Smithen, C. E. (1979). Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency.Int. J. Radiat. Biol.,35, 133–150

    Article  CAS  Google Scholar 

  201. Adams, G. E., Clarke, E. D., Gray, P., Jacobs, R. S., Stratford, I. J., Wardman, P., Watts, M. E., Parrick, J., Wallace, R. G. and Smithen, C. E. (1979). Structure-activity relationships in the development of hypoxic cell radiosensitizers. II. Cytotoxicity and therapeutic ratio.Int. J. Rad. Biol.,35, 151–166

    Article  CAS  Google Scholar 

  202. . Overgaard, J., Hansen, H. S., Anderson, A. P., Hjelm-Hansen, H., Jorgensen, K., Sandberg, E., Berthelsen, A., Hammer, R. and Pedersen, M. (1989). Misonidazole combined with split-course radiotherapy in the treatment of invasive carcinoma of larynx and pharynx: report from the DAHANCA 2 study.Int. J. Radiat. Oncol. Biol. Phys.,16, 1065–1068

    Article  PubMed  CAS  Google Scholar 

  203. Dische, S. (1989). Hypoxic cell sensitisers: clinical developments.Int. J. Radiat. Oncol. Biol. Phys.,16, 1057–1060

    Article  PubMed  CAS  Google Scholar 

  204. Brown, D. M., Parker, E. and Brown, J. M. (1982). Structure-activity relationships of 1-substituted-2-nitroimidazoles: effect of partition coefficient and sidechain hydroxyl groups on radiosensitisationin vitro.Radiat. Res.,90, 98–108

    Article  PubMed  CAS  Google Scholar 

  205. Brown, J. M. (1989). Hypoxic cell sensitizers: where next?Int. J. Radiat. Oncol. Biol. Phys.,16, 987–993

    Article  PubMed  CAS  Google Scholar 

  206. Adams, G. E., Ahmed, I., Sheldon, P. W. and Stratford, I. J. (1984). Radiation sensitisation and chemopotentiation: RSU-1069, a compound more efficient than misonidazolein vitroandin vivo.Br. J. Cancer,40, 571–577

    Article  Google Scholar 

  207. Ahmed, I., Jenkins, T. C., Walling, J. M., Stratford, I. J., Sheldon, P. W., Adams, G. E. and Fielden, E. M. (1986). Analogies of RSU-1069: radiosensitisation and toxicityin vitroandin vivo.Int. J. Radiat. Oncol. Biol. Phys.,12, 1079–1081

    Article  PubMed  CAS  Google Scholar 

  208. Roberts, P. B., Denny, W. A., Wakelin, L. P. G., Anderson, R. F. and Wilson, W. R. (1990). Radiosensitisation of mammalian cellsin vitroby nitroacridines.Radiat. Res.,123, 153–164

    Article  PubMed  CAS  Google Scholar 

  209. Skov, K. A. (1987). Modification of radiation response by metal complexes: a review with emphasis on non-platinum studies.Radiat. Res.,112, 217–242

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Denny, W.A. (1992). The role of medicinal chemistry in the discovery of DNA-active anticancer drugs: from random searching, through lead development, to de novo design. In: Waring, M.J., Ponder, B.A.J. (eds) The Search for New Anticancer Drugs. Cancer Biology and Medicine, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0385-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0385-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6659-4

  • Online ISBN: 978-94-009-0385-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics