Multifactorial control of autoimmune insulin-dependent diabetes in NOD mice: lessons for inflammatory bowel disease

  • E. H. Leiter


The mouse has been a favored organism for development of models of human genetic diseases. The mouse genome is over 85% homologous with the human genome. In contrast to the other nonhuman mammalian genomes, the mouse genome has been extensively characterized, and is readily amenable to manipulation by transgenic or gene targeting technologies. Inbred mice have been extensively employed to analyze the complex interplay between genes and environment in the development and control of immune responsiveness to antigens. A multiplicity of genes with known effects on immune responsiveness have been mapped. The use of gene targeting to elicit null mutations in specific interleukin genes (e.g. I12, I14, I110, Tgfb1)or T cell receptor (TCR) genes render mice susceptible to intestinal inflammation. Indeed, in certain of these gene ‘knockout’ mice, mucosal inflammation is often the most profound lesion observed; perhaps because, unlike internal tissues, mucosal epithelium and attendant gut-associated lymphoreticular tissue (GALT) are under constant antigenic bombardment1. Cytokine imbalances elicited by targeting specific interleukin genes may lead to loss of T lymphocyte-mediated suppression of B lymphocyte responses to mucosal antigens1. Differential sensitivity of certain inbred strains to colonic inflammation induced by the macrophage-activating agent, dextran sulfate2, affords a promising avenue for identifying major genes associated with acute inflammatory responsiveness leading to ulceration of the lower bowel. In addition, identification of a spontaneous, juvenile-onset colitis in C3H/HeJBir mice3 affords yet another promising tool for dissecting the complex relationship between genes and environment that must underlie most instances of inflammatory bowel disease (IBD) in humans.


Inflammatory Bowel Disease Major Histocompatibility Complex Major Histocompatibility Complex Class Insulin Dependent Diabetes Mellitus Glutamic Acid Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strober W, Ehrhadt R. Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell. 1993; 75: 203–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Cooper H, Murthy S, Shah R, Sedergran D. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993; 69: 238–49.PubMedGoogle Scholar
  3. 3.
    Sundberg J, Elson C, Bedigian H, Birkenmeier E. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology. 1994 ( Submitted).Google Scholar
  4. 4.
    Yang H, Shohat T, Rotter J. The genetics of inflammatory bowel disease. In: MacDermott R, Stenson W, editors. Current topics in gastroenterology: inflammatory bowel disease. New York: Elsevier; 1992: 17–51.Google Scholar
  5. 5.
    Yang H, McElree C, Roth M-P, Shanahan F, Targan S, Rotter J. Familial empirical risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut. 1993; 34: 517–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Hammer R, Maika S, Richardson J, Tang J-P, Taurog J. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2-m: an animal model of HLA-B27associated human disorders. Cell. 1990; 63: 1099–112.PubMedCrossRefGoogle Scholar
  7. 7.
    Rotter J, Yang H. Resolving the genetics of IBD: the challenge for the 90’s. Prog Inflamm Bowel Dis. 1993; 14: 1–7.Google Scholar
  8. 8.
    Sheehy MJ. HLA and insulin-dependent diabetes. Diabetes. 1992; 41: 123–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Todd JA, Acha-Orbea H, Bell JI et al. A molecular basis for MHC class II-associated autoimmunity. Science. 1988; 240: 1003–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Nepom GT. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes. 1990; 39: 1153–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Kikutani H, Makino S. The murine autoimmune diabetes model: NOD and related strains. In Dixon FJ, editor. Advances in immunology. New York: Academic Press; 1992: 285–322.Google Scholar
  12. 12.
    Leiter E. The nonobese diabetic mouse: a model for analyzing the interplay between heredity and environment in development of autoimmune disease. ILAR News. 1993; 35: 4–14.Google Scholar
  13. 13.
    Serreze D, Leiter E. Insulin dependent diabetes mellitus (IDDM) in NOD mice and BB rats: origins in hematopoietic stem cell defects and implications for therapy. In: Shafrir E, editor. Lessons from animal diabetes. London: Smith-Gordon; 1994 ( In press ).Google Scholar
  14. 14.
    Bowman M, Leiter E, Atkinson M. Autoimmune diabetes in NOD mice: a genetic programme interruptible by environmental manipulation. Immunol Today. 1994: 15: 115–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Shultz LD, Sidman CL. Genetically determined murine models of immunodeficiency. Annu Rev Immunol. 1987; 5: 367–403.PubMedCrossRefGoogle Scholar
  16. 16.
    Lampeter E, Homberg M, Quabeck K et al. Transfer of insulin dependent diabetes between HLA-identical siblings by bone marrow transplantation. Lancet. 1993; 341: 1243–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Vialettes B, Maraninchi D, San Marco MP et al. Autoimmune polyendocrine failure–type 1 (insulin-dependent) diabetes mellitus and hypothyroidism–after allogeneic bone marrow transplantation in a patient with lymphoblastic leukaemia. Diabetologia. 1993; 36: 541–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Leiter EH, Serreze DV. Antigen presenting cells and the immunogenetics of autoimmune diabetes in NOD mice. Reg Immunol. 1992; 4: 263–73.PubMedGoogle Scholar
  19. 19.
    Faustman D, Li X, Lin HY et al. Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science. 1992; 254: 1756–61.CrossRefGoogle Scholar
  20. 20.
    Gaskins HR, Monaco JJ, Leiter EH. Intra-MHC transporter (Ham) genes in diabetes susceptible NOD/Lt mice. Science. 1992; 256: 1826–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Wicker L, Podolin P, Fischer P, Sirotina A, Boltz R, Peterson L. Expression of intra-MHC transporter (Ham) genes and class I antigens in diabetes-susceptible NOD mice. Science. 1992; 256: 1828–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Pearce RB, Trigler L, Svaasand EK, Peterson CM. Polymorphism in the mouse Tap-1 gene. J Immunol. 1993; 15110: 5338–47.Google Scholar
  23. 23.
    Van Kaer L, Ashton-Rickardt P, Ploegh J, Tonegawa S. TA PI mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell. 1993; 71: 1205–14.CrossRefGoogle Scholar
  24. 24.
    Christianson SW, Shultz LD, Leiter EH. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice: relative contributions of CD4+ and cD8+ T lymphocytes from diabetic versus prediabetic NON.NON-Thy-1a donors. Diabetes. 1993; 42: 44–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Wicker L, Leiter E, Todd J et al. β2 microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes. 1994; 43: 500–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC. MHC class I deficient NOD-B2m null mice are diabetes and insulitis resistant. Diabetes. 1994; 43: 505–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Serreze DV, Gaskins HR, Leiter EH. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol. 1993; 150: 2534–43.PubMedGoogle Scholar
  28. 28.
    Risch N, Ghosh S, Todd J. Statistical evaluation of multiple-locus linkage data in eperimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993; 53: 702–14.PubMedGoogle Scholar
  29. 29.
    Wilson GL, Leiter EH. Streptozotocin interactions with pancreatic β cells and the induction of insulin dependent diabetes. In: Dyrberg T, editor. Current topics in microbiology and immunobiology. Berlin: Springer Verlag; 1990: 27–54.Google Scholar
  30. 30.
    Gerling I, Freidman H, Greiner D, Shultz L, Leiter E. Multiple low dose streptozotocininduced diabetes in NOD-scid/scid mice in the absence of functional lymphocytes. Diabetes. 1994; 43: 433–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Acha-Orbea H, Mitchell DJ, Timmerman L et al. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell. 1988; 54: 263–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Waters SH, O’Neill JJ, Melican DT, Appel MC. Multiple TCR Vβ usage by infiltrates of young NOD mouse islets of Langerhans: a polymerase chain reaction analysis. Diabetes. 1992; 41: 308–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Maeda T, Sumida T, Kurasawa K et al. T-lymphocyte-receptor repertoire of infiltrating T lymphocytes into NOD mouse pancreas. Diabetes. 1991; 40: 1580–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Singh B, Rabinovitch A. Influence of microbial agents on the development and prevention of autoimmune diabetes. Autoimmunity. 1993; 15: 209–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Shehadeh NN, LaRosa F, Lafferty KJ. Altered cytokine activity in adjuvant inhibition of autoimmune diabetes. J Autoimmun. 1993; 6: 291–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaufman D, Clare-Salzler M, Tlan J et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993; 366: 69–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Tisch R, Yang X-D, Singer S, Liblau R, Fugger L, McDevitt H. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993; 366: 72–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki T, Yamada T, Takao T et al. Diabetogenic effects of lymphocyte transfusion on the NOD or NOD nude mouse. In: Rygaard NBJ, Graem M, Sprang-Thomsen M, editors. Immune-deficient animals in biomedical research. Basel: Karger; 1987: 112–16.Google Scholar
  39. 39.
    Oldstone MBA. Prevention of type 1 diabetes in nonobese diabetic mice by virus infection. Science. 1988; 23: 500–2.CrossRefGoogle Scholar
  40. 40.
    Wilberz S, Partke HJ, Dagnaes-Hansen F, Herberg L. Persistent MHV (mouse hepatitis virus) infection reduces the incidence of diabetes mellitus in non-obese diabetic mice. Diabetologia. 1991; 34: 2–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Hermite L, Vialettes B, Naquet P, Atlan C, Payan M-J, Vague P. Paradoxical lessening of autoimmune processes in non-obese diabetic mice after injection with the diabetogenic variant of encephalomyocarditis virus. Eur J Immunol. 1990; 20: 1297–303.CrossRefGoogle Scholar
  42. 42.
    Sadelain MWJ, Qin H-Y, Lauzon J, Singh B. Prevention of type 1 diabetes in NOD mice by adjuvant immunotherapy. Diabetes. 1990; 39: 583–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Coleman DL, Kuzava JE, Leiter EH. Effect of diet on the incidence of diabetes in non-obese diabetic (NOD) mice. Diabetes. 1990;39:432–6PubMedCrossRefGoogle Scholar
  44. 44.
    Serreze DV, Gaedeke JW, Leiter EH. Hematopoietic stem cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc Nall Acad Sci USA. 1993; 90: 9625–9.CrossRefGoogle Scholar
  45. 45.
    Elliott J, Qin H-Y, Bhatti S et al. Immunological cross-reactivity between mouse and E. coli glutamic acid decarboxylase (GAD) in NOD mice: implications for induction and prevention of autoimmune diabetes. Diabetes. 1994 (In press).Google Scholar
  46. 46.
    Pietropaolo M, Castano L, Babu S et al. Molecular cloning, characterization, and chromosome localization of a novel type 1 diabetes-related neuroendocrine autoantigen. J Clin Invest. 1993; 92: 359–71.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers and Axcan Pharma, Inc. 1994

Authors and Affiliations

  • E. H. Leiter

There are no affiliations available

Personalised recommendations