Skip to main content

Growth factors in IBD

  • Chapter
Inflammatory Bowel Disease
  • 122 Accesses

Abstract

There are several morphological changes which can be discerned in the spectrum of inflammatory bowel disease (IBD), encompassed by the general processes of cell proliferation and differentiation. Examples which spring immediately to mind are the mucosal hyperplasia which accompanies ulcerative colitis, where colonic crypts lengthen and undergo increased crypt fission, the mucin cell depletion also found in ulcerative colitis, and the several metaplasias, such as pyloric metaplasia in Crohn’s disease, and Paneth cell metaplasia, commonest in ulcerative colitis. It is therefore relatively easy to manufacture a slot for the study of growth control in understanding the pathogenesis of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wright NA, Alison MR. The biology of epithelial populations. Oxford: Clarendon Press; 1984.

    Google Scholar 

  2. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main cell types in the mouse small intestine. V. The unitarian hypothesis. Am J Anat. 1974; 141: 537–62.

    Article  PubMed  CAS  Google Scholar 

  3. Chang WWL, Leblond CP. A unitarian theory of the origin of the three main types of epithelial cells in the mouse small intestine. Anat Rec. 1971; 269: 293.

    Google Scholar 

  4. Winton DJ, Ponder BA. Stem cell organisation in the mouse small intestine. Proc R Soc Lond B. 1990; 241: 13–18.

    Article  CAS  Google Scholar 

  5. Griffiths DR, Davies SJ, Williams D, Williams GT, Williams ED. Demonstration of somatic mutation and crypt clonality by X-linked histochemistry. Nature (Lond.). 1988; 333: 461.

    Article  CAS  Google Scholar 

  6. Thompson M, Fleming K, Evans D, Wright NA. Clonal origin of gut endocrine cells in male:female chimaeras demonstrated by combined in situ hybridisation and immunocytochemistry. Development. 1990; 110: 477–81.

    PubMed  CAS  Google Scholar 

  7. Pearse AGE, Tabor Tabor T. Neuroendocrine embryology and the APUD cell concept. Clin Endocrinol Suppl. 1976; 5: 299–344.

    Google Scholar 

  8. Kaftan, Wright NA. Studies on the mechanism of goblet cell depletion in experimental colitis. J Pathol. 1989; 159: 75–85.

    Article  PubMed  CAS  Google Scholar 

  9. Riddell R. The precancerous phase of ulcerative colitis. In: Morson B, editor. Topics in pathology. Berlin: Springer; 1978: 179–219.

    Google Scholar 

  10. Wright NA, Pike C, Elias G. Ulceration induces a novel epidermal growth factor-secreting cell lineage in human gastrointestinal stem cells. Nature. 1990; 343: 82–5.

    Article  PubMed  CAS  Google Scholar 

  11. Wright NA, Al-Dewachi HF, Watson AJ, Appleton DR. The effect of single and multiple injections of prednisolone on cell population kinetics in the small bowel of the rat. Virch Arch Cell B. 1978; 28: 1339–50.

    Google Scholar 

  12. Williamson R. Intestinal adaptation. 1. Structural, functional and cytokinetic aspects. N Engl J Med. 1978; 298: 1398–402.

    Google Scholar 

  13. Williamson R. Intestinal adaptation. 2. Mechanisms of control. N Engl J Med. 1978; 298: 1444–50.

    Article  PubMed  CAS  Google Scholar 

  14. Williamson R, Bucholtz TN, Malt RA. Humoral stimulation in small bowel after transection and resection. Gastroenterology. 1978; 75: 249–54.

    PubMed  CAS  Google Scholar 

  15. Feldman EJ, Dowling RH, McNaughton J, Peters TJ. Effect of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology. 1976; 70: 712.

    PubMed  CAS  Google Scholar 

  16. Hanson WR, Rijke RPC, Plaiier HM et al. The effect of intestinal resection on Thiry-Vella fistula of jejunal and ileal origin in the rat; evidence for a systemic control mechanism of cell renewal. Cell Tissue Kinet. 1975; 8: 135.

    Google Scholar 

  17. Miazza et al. The effects of intrarectal installation of hypertonic glucose on cell proliferation in the small intestine. Gut. 1985; 26: 518–24.

    Article  PubMed  CAS  Google Scholar 

  18. Al-Mukhtar MYT, Sagor G, Ghatei M et al. The relationship between endogenous gastrointestinal hormones and cell proliferation in models of intestinal adaptation. In: Robinson J, Dowling RH, Ricken EO, editors. Mechanism of intestinal adaptation. Lancaster: MTP Press; 1989: 243–53.

    Google Scholar 

  19. Clarke RM. ‘Luminal nutrition’ versus ‘functional workload’ as controllers of mucosal morphology and epithelial cell replacement in the rat small intestine. Digestion. 1977; 68: 83–93.

    Google Scholar 

  20. Jacobs LR, Taylor BR, Dowling R. Effect of luminal nutrition on the intestinal adaptation following Thiry-Vella fistula in the dog. Clin Sci Mol Med. 1975; 49: 26.

    Google Scholar 

  21. Hosomi M, Stace ME, Larussi F, Smith SM, Murphy GM, Dowling RH. Role of polyamines in intestinal adaptation in the rat. Eur J Clin Invest. 1987; 375: 375–85.

    Article  Google Scholar 

  22. Goodlad RA, Gregory H, Wright NA. Is polyamine synthesis in the proliferative response of the intestinal epithelium to urogastrone-epidermal growth factor. Clin Sci Mol Med. 1989; 64: 595–8.

    Google Scholar 

  23. Yarrington JT, Sprinkle DJ, Loude DE, Diekema KA, MaCann PP, Gibson JP. Intestinal changes caused by uL-a-difluomethylornithine (DEMO), an inhibitor of ornithine decarboxylase. Exp Mol Pathol. 1983; 39: 300–16.

    Article  PubMed  CAS  Google Scholar 

  24. Yang P, Baylin SB, Luk GD. Polyamines and intestinal growth: absolute requirement for ODC activity in adaptation during lactation. Am J Physiol. 1984; 247: 6553–7.

    Google Scholar 

  25. McCormack SA, Johnson LR. Role of polyamines in gastrointestinal growth. Am J Physiol. 1991; 260: G695–806.

    Google Scholar 

  26. Seidel ER, Haddox MK, Johnson LR. Ileal mucosal growth during intraluminal infusion of ethylamine or putrescine. Am J Physiol. 1985; 249: G434–8.

    PubMed  CAS  Google Scholar 

  27. Ratcliffe B, Lee CY, Wright NA, Goodlad RA. Dietary fibre and the gastrointestinal epithelium; differential response in the stomach small intestine and colon of conventional and germ-free rats. In: Waldron KW, editors. Food and cancer prevention. Royal Society of Chemistry; 1991: 364–8.

    Google Scholar 

  28. Bloom S, Polak J. Hormonal pattern of intestinal adaptation. In: Polak J, Bloom SR, Daly M, Wright NA, editors. Structure of the gut. London: Glaxo; 1984: 409–19.

    Google Scholar 

  29. Chinery R, Goodlad RA, Wright NA. The effects of fibre on the expression of growth factors in the colon. J Nutr. 1991:

    Google Scholar 

  30. Schaudies P, Grines J, Wray HL, Koldovsky O. Identification and partial characterisation of multiple forms of biologically active EGF in rat milk. Am J Physiol. 1990; Supp1. 69: G1056–61.

    Google Scholar 

  31. Thompson JF. Specific receptors for epidermal growth factor in rat intestinal microvillus membranes. Am J Physiol. 1988; 254: G429–35.

    PubMed  CAS  Google Scholar 

  32. Scheving LA, Shiurba RA, Nyguyen TD, Gray GM. Epidermal growth factor receptor of the intestinal enterocyte. Localization to laterobasal but not brush border membrane. J Biol Chem. 1989; 264: 1735–41.

    PubMed  CAS  Google Scholar 

  33. Weaver LT, Gonnella PA, Israel EJ, Walker WA. Uptake of epidermal growth factor by the small intestinal epithelium of the fetal rat. Endocrinology. 1990; 98: 828–37.

    CAS  Google Scholar 

  34. Rao RK, Thornburg W, Korc M, Matrisian SM, Magun BE. Koldovsky O. Processing of epidermal growth factor by suckling and adult rat intestinal cells. Am J Physiol. 1986; 250: G850–5.

    PubMed  CAS  Google Scholar 

  35. Reeve JR, Richards RC, Cooke T. The effects of intracolonic EGF on mucosal growth and experimental carcinogenesis. Br J Cancer. 1991; 63: 223–6.

    Article  Google Scholar 

  36. Goodlad RA, Wilson TJ, Lenton W, Gregory H, Wright NA. Intravenous but not intragastric urogastrone-EGF is trophic to the intestine of parenterally-fed rats. Gut. 1987; 28: 573–82.

    Article  PubMed  CAS  Google Scholar 

  37. Konturek SJ, Ciezkowski M, Jaworek J. Effects of epidermal growth factor on gastroduodenal secretions. Am J Physiol. 1984; 246: G580–6.

    PubMed  CAS  Google Scholar 

  38. Koyama D, Podolsky DK. Differential expression of transforming growth factors a and ß in rat intestinal cells. J Clin Invest. 1989; 83: 1768–73.

    Article  PubMed  CAS  Google Scholar 

  39. Opleta-Madsen K, Hardin J, Gall DG. Epidermal growth factor upregulates intestinal electrolyte transport. Am J Physiol. 1991; 260: G807–14.

    PubMed  CAS  Google Scholar 

  40. Goodlad RA, Raja KB, Peters TJ, Wright NA. Effects of urogastrone-epidermal growth factor on intestinal brush border enzymes and mitotic activity. Gut. 1991; 32: 994–8.

    Article  PubMed  CAS  Google Scholar 

  41. Tomasetto C, Rio M-C, Gautier C, Wolf C, Hareuvenu M, Chambon P, Lathe R. hSP, the domain-duplicated homologue of pS2 protein, is expressed with pS2 in the stomach but not in the breast. EMBO J. 1990; 92: 407–14.

    Google Scholar 

  42. Delarco JE, Todaro GJ. Growth factors from murine sarcoma virus-induced cells. Proc Natl Acad Sci USA. 1978; 75: 4001–5.

    Article  CAS  Google Scholar 

  43. Moses HL, Branum EB, Proper JA, Robinson RA. Transforming growth factor production by chemically-transformed cells. Cancer Res. 1981; 41: 2842–8.

    PubMed  CAS  Google Scholar 

  44. Coffey RJ, Snipes NH, Bascom CC et al. Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res. 1988; 48: 1596–602.

    PubMed  CAS  Google Scholar 

  45. Hoosein NM, Brattain DE, MacKight MK, Levine AE, Brattain MG. Characterisation of the inhibitory effects of transforming growth factor-ß on a human colon carcinoma cell line. Cancer Res. 1987; 47: 2950–4.

    PubMed  CAS  Google Scholar 

  46. Chakrabarty S, Fan D, Varani G. Modulation of differentiation and proliferation in human carcinoma cells by transforming growth factor ßl and ß2. Int J Cancer. 1990; 46: 493–9.

    Article  PubMed  CAS  Google Scholar 

  47. Barnard JA, Coffey RJ. Transforming growth factor ß. In: Walsh JH, Dockray GJ, editors. Gut peptides; biochemistry and physiology. New York: Raven Press; 1993; 615–31.

    Google Scholar 

  48. Leof EB, Proper JA, Goustin AS, Shipley GD, DiCorleto PE, Moses HL. Induction of c-sis mRNA and activity similar to platelet derived growth factor by transforming growth factor-b; a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA. 1986; 83: 2453–7.

    Article  PubMed  CAS  Google Scholar 

  49. Suemori S, Ciacci C, Podolsky DK. Regulation of transforming growth factor expression in rat intestinal epithelial cell lines. J Clin Invest. 1991; 67: 2216–21.

    Article  Google Scholar 

  50. Freemont Petal. The three-dimensional structure of PSP as shown by X-ray crystallography. Proc Natl Acad Sci USA. 1994 (In press).

    Google Scholar 

  51. Carr M, Lane A et al. The solution structure of PSP demonstrated by 2D NMR. Proc Natl Acad Sci USA. 1994 (In press).

    Google Scholar 

  52. Thim L, Thomsen J, Christensen M, Jorgensen KH. The amino acid sequence of pancreatic spasmolytic polypeptide. Biochim Biophys Acta. 1985; 285: 410–18.

    Article  Google Scholar 

  53. Poulsom R, Wright NA. The trefoil peptide family. Am J Physiol. 1993;

    Google Scholar 

  54. Zimmerman EM, Sartor RB, McCall RD, Pardo M, Spencer EM, Lund PK. Insulin-like growth factor 1 and interleukin lb mRNA in a rat model of granulomatous enterocolitis and hepatitis. Gastroenterology. 1993; 105: 399–409.

    Google Scholar 

  55. Rossiter G, Podolsky DK. Expression of transforming growth factor a and ß in colonic mucosa in ulcerative colitis. Gastroenterology. 1990; 98: A471.

    Google Scholar 

  56. Ahnen D et al. The ulcer-associated cell lineage shows the histogenetic programme of Brunners glands but evolves the proliferative organisation of the gastric gland. J Pathol. 1994 (In press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers and Axcan Pharma, Inc.

About this chapter

Cite this chapter

Wright, N.A. (1994). Growth factors in IBD. In: Sutherland, L.R., et al. Inflammatory Bowel Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0371-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0371-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6653-2

  • Online ISBN: 978-94-009-0371-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics