Skip to main content

Algorithms for Solving Nonlinear Systems of Equations

  • Chapter
Algorithms for Continuous Optimization

Part of the book series: NATO ASI Series ((ASIC,volume 434))

Abstract

In this paper we survey numerical methods for solving nonlinear systems of equations F (x) = 0, where F: R nR n. We are especially interested in large problems. We describe modern implementations of the main local algorithms, as well as their globally convergent counterparts.

Work supported by FAPESP (PT NO 90-3724-6) FAEP-UNICAMP, FINEP and CNPq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaffy, J. [1992]: Superlinear convergence theorems for Newton-type methods for nonlinear systems of equations, JOTA, 73, pp. 269–277

    Article  MathSciNet  MATH  Google Scholar 

  2. Abaffy, J.; Broyden, C.G.; Spedicato, E. [1984]: A class of direct methods for linear equations, Numerische Mathematik 45, pp. 361–376

    Article  MathSciNet  MATH  Google Scholar 

  3. Abaffy, J.; Galantai, A.; Spedicato, E. [1987]: The local convergence of ABS method for nonlinear algebraic system, Numerische Mathematik 51, pp. 429–439

    Article  MathSciNet  MATH  Google Scholar 

  4. Abaffy, J.; Spedicato, E. [1989]: ABS Projection Algorithms, Mathematical Techniques for Linear and Nonlinear Equations, Ellis Horwood, Chichester

    Google Scholar 

  5. Axelsson, O. [1985]: A survey of preconditioned iterative methods for linear systems of equations, BIT 25, pp. 166–187

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnes, J.G.P. [1965]: An algorithm for solving nonlinear equations based on the secant method, Computer Journal 8, pp. 66–72

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.P.; Tsitsiklis, C. [1989]: Parallel and Distributed Computation. Numerical Methods, The Johns Hopkins University Press, New York

    Google Scholar 

  8. Brent, R.P. [1973]: Some efficient algorithms for solving systems of nonlinear equations, SIAM Journal on Numerical Analysis 10, pp. 327–344

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, K.M. [1969]: A quadratically convergent Newton-like method based upon Gaussian elimination, SIAM Journal on Numerical Analysis 6, pp. 560–569

    Article  MathSciNet  MATH  Google Scholar 

  10. Broyden, C.G. [1965]: A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation 19, pp. 577–593

    Article  MathSciNet  MATH  Google Scholar 

  11. Broyden, C.G.; Dennis Jr., J.E.; More, J.J. [1973]: On the local and superlinear convergence of quasi-Newton methods, Journal of the Institute of Mathematics and its Applications 12, pp. 223–245

    Article  MathSciNet  MATH  Google Scholar 

  12. Burmeister, W.; Schmidt, J.W. [1978]: On the k-order of coupled sequences arising in single-step type methods, Numerische Mathematik 33, pp. 653–661

    MathSciNet  Google Scholar 

  13. Chadee, F.F. [1985]: Sparse quasi-Newton methods and the continuation problem, T.R. S.O.L. 85–8, Department of Operations Research, Stanford University

    Google Scholar 

  14. Chow, S.N.; Mallet-Paret, J.; Yorke, J.A. [1978]: Finding zeros of maps: Homotopy methods that are constructive with probability one, Mathematics of Computation 32, pp. 887–899

    Article  MathSciNet  MATH  Google Scholar 

  15. Cimmino, G. [1938]: Calcolo approsimato per la soluzione dei sistemi di equazioni lineari, La Ricerca Scientifica Ser II, Ano IV 1 pp. 326–333

    MathSciNet  Google Scholar 

  16. Coleman, T. F.; Garbow, B. S.; Moré, J. J. [1984]: Software for estimating sparse Jacobian matrices, ACM Trans. Math. Software 11, pp. 363–378

    Article  Google Scholar 

  17. Coleman, T. F.; Moré, J. J. [1983]: Estimation of sparse Jacobian matrices and graph coloring problems, SIAM Journal on Numerical Analysis 20, pp. 187–209

    Article  MathSciNet  MATH  Google Scholar 

  18. Curtis, A. R.; Powell, M. J. D.; Reid, J. K. [1974], On the estimation of sparse Jacobian matrices, Journal of the Institute of Mathematics and its Applications 13, pp. 117–120

    MATH  Google Scholar 

  19. Davidenko, D.F. [1953]: On the approximate solution of nonlinear equations, Ukrain. Mat. Z. 5, pp. 196 -206

    MathSciNet  MATH  Google Scholar 

  20. Dembo, R.S.; Eisenstat, S.C.; Steihaug, T. [1982]: Inexact Newton methods, SIAM Journal on Numerical Analysis 19, pp. 400–408

    Article  MathSciNet  MATH  Google Scholar 

  21. Dennis Jr., J.E.; Martinez, J.M.; Zhang, X. [1992]: Triangular Decomposition Methods for Reducible Nonlinear Systems of Equations, Technical Report, Department of Mathematical Sciences, Rice University

    Google Scholar 

  22. Dennis Jr., J.E.; Marwil, E.S. [1982]: Direct secant updates of matrix factorizations, Mathematics of Computation 38, pp. 459–476

    Article  MathSciNet  MATH  Google Scholar 

  23. Dennis Jr., J.E.; More, J.J. [1974]: A characterization of superlinear convergence and its application to quasi-Newton methods, Mathematics of Computation 28, pp. 549 -560

    Article  MathSciNet  MATH  Google Scholar 

  24. Dennis Jr., J.E.; More, J.J. [1977]: Quasi-Newton methods, motivation and theory, SIAM Review 19, pp. 46–89

    Article  MathSciNet  MATH  Google Scholar 

  25. Dennis Jr., J.E.; Schnabel, R.B. [1979]: Least change secant updates for quasi-Newton methods, SIAM Review 21, pp. 443–459

    Article  MathSciNet  MATH  Google Scholar 

  26. Dennis Jr., J.E.; Schnabel, R.B. [1983]: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  27. Dennis Jr., J.E.; Walker, H.F. [1981]: Convergence theorems for least-change secant update methods, SIAM Journal on Numerical Analysis 18, pp. 949–987

    Article  MathSciNet  MATH  Google Scholar 

  28. Deuflhard, P. [1991]: Global inexact Newton methods for very large scale nonlinear problems Impact of Computing in Science and Engineering 3, pp. 366–393

    Article  MathSciNet  MATH  Google Scholar 

  29. Diniz-Ehrhardt, M.A.; Martinez, J.M. [1992]: A parallel projection method for over determined nonlinear systems of equations, to appear in Numerical Algorithms

    Google Scholar 

  30. Duff, I.S. [1977]: MA28-a set of Fortran subroutrines for sparse unsymmetric linear equations. AERE R8730, HMSO, London

    Google Scholar 

  31. Duff, I.S.; Erisman, A.M.; Reid, J.K. [1989]: Direct Methods for Sparse Matrices, Oxford Scientific Publications

    MATH  Google Scholar 

  32. Eisenstat, S.C.; Walker, H.F. [1993]: Globally convergent inexact Newton methods, to appear in SIAM Journal on Optimization

    Google Scholar 

  33. Eriksson, J. [1976]: A note on the decomposition of systems of sparse nonlinear equations, BIT 16, pp. 462–465

    Article  MathSciNet  MATH  Google Scholar 

  34. Fletcher, R. [1987]: Practical Methods of Optimization (2nd edition), John Wiley and Sons, New York

    MATH  Google Scholar 

  35. Forster, W. [1993]: Homotopy methods, to appear in Handbook of Global Optimization, Kluwer

    Google Scholar 

  36. Friedlander, A.; Gomes-Ruggiero, M.A.; Marténez, J.M.; Santos, S.A. [1993]: A globally convergent method for solving nonlinear systems using a trust-region strategy, Technical Report, Department of Applied Mathematics, University of Campinas

    Google Scholar 

  37. Gay, D.M. [1975]: Brown’s method and some generalizations with applications to minimization problems, Ph D Thesis, Computer Science Department, Cornell University, Ithaca, New York

    Google Scholar 

  38. Gay, D.M. [1979]: Some convergence properties of Broy den’s method, SIAM Journal on Numerical Analysis 16, pp. 623–630

    Article  MathSciNet  MATH  Google Scholar 

  39. Gay, D.M.; Schnabel, R.B. [1978]: Solving systems of nonlinear equations by Broy-den’s method with projected updates, in Nonlinear Programming 3, edited by O. Mangasarian, R. Meyer and S. Robinson, Academic Press, New York, pp. 245–281

    Google Scholar 

  40. George, A.; Ng, E. [1987]: Symbolic factorization for sparse Gaussian elimination with partial pivoting, SIAM Journal on Scientific and Statistical Computing 8, pp. 877–898

    Article  MathSciNet  MATH  Google Scholar 

  41. Golub, G.H.; Van Loan, Ch.F. [1989]: Matrix Computations, The Johns Hopkins University Press, Baltimore and London.

    MATH  Google Scholar 

  42. Gomes-Ruggiero, M.A.; Martinez, J.M. [1992]: The Column-Updating Method for solving nonlinear equations in Hilbert space, Mathematical Modelling and Numerical Analysis 26, pp 309–330

    MATH  Google Scholar 

  43. Gomes-Ruggiero, M.A.; Martinez, J.M.; Moretti, A.C. [1992]: Comparing algorithms for solving sparse nonlinear systems of equations, SIAM Journal on Scientific and Statistical Computing 13, pp. 459–483

    Article  MATH  Google Scholar 

  44. Gragg, W.B.; Stewart, G.W. [1976]: A stable variant of the secant method for solving nonlinear equations, SIAM Journal on Numerical Analysis 13, pp. 127–140

    Article  MathSciNet  Google Scholar 

  45. Griewank, A. [1986]: The solution of boundary value problems by Broyden based secant methods, CTAC-85. Proceedings of the Computational Techniques and Applications Conference, J. Noye and R. May (eds.), North Holland, Amsterdam

    Google Scholar 

  46. Griewank, A. [1992]: Achieving Logarithmic Growth of Temporal and Spacial Complexity in Reverse Automatic Differentiation, Optimization Methods and Software 1, pp. 35–54

    Article  Google Scholar 

  47. Griewank, A.; Toint, Ph.L. [1982a]: On the unconstrained optimization of partially separable functions, in Nonlinear Optimization 1981, edited by M.J.D. Powell, Academic Press, New York

    Google Scholar 

  48. Griewank, A.; Toint, Ph.L. [1982b]: Partitioned variable metric for large structured optimization problems, Numerische Mathematik 39, pp. 119–137

    Article  MathSciNet  MATH  Google Scholar 

  49. Griewank, A.; Toint, Ph.L. [1982c]: Local convergence analysis for partitioned quasi-Newton updates, Numerische Mathematik 39, pp. 429–448

    Article  MathSciNet  MATH  Google Scholar 

  50. Griewank, A.; Toint, Ph.L. [1984]: Numerical experiments with partially separable optimization problems, in Numerical Analysis Proceedings Dundee 1983, edited by D.F. Griffiths, Lecture Notes in Mathematics vol. 1066, Springer-Verlag, Berlin, pp. 203–220

    Google Scholar 

  51. Grippo, L.; Lampariello, F.; Lucidi, S. [1986]: A nonmonotone line search technique for Newton’s method, SIAM Journal on Numerical Analysis 23, pp. 707 – 716

    Article  MathSciNet  MATH  Google Scholar 

  52. Hart, W.E.; Soul, S.O.W. [1973]: Quasi-Newton methods for discretized nonlinear boundary value problems, J. Inst. Math. Applies. 11, pp. 351–359

    Article  MATH  Google Scholar 

  53. Hestenes, M.R.; Stiefel, E. [1952]: Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards B49, pp. 409–436

    MathSciNet  Google Scholar 

  54. Hoyer, W. [1987]: Quadratically convergent decomposition algorithms for nonlinear systems with special structure, Inform. Tech. Univ. Dresden 07, pp. 23–87

    Google Scholar 

  55. Hoyer, W.; Schmidt, J.W. [1984]: Newton-type decomposition methods for equations arising in network analysis, Z. Angew-Math. Mech. 64, pp. 397–405

    Article  MathSciNet  MATH  Google Scholar 

  56. Hoyer, W.; Schmidt, J.W.; Shabani, N. [1989]: Superlinearly convergent decompositon methods for block-tridiagonal nonlinear systems of equations, Numerical Functional Analysis and Optimization 10 (9 & 10), pp. 961–975

    MathSciNet  MATH  Google Scholar 

  57. Iri, M. [1984]: Simultaneous computations of functions, partial derivatives and estimates of rounding errors. Complexity and Practicality, Japan Journal of Applied Mathematics 1, pp. 223–252

    Article  MathSciNet  MATH  Google Scholar 

  58. Johnson, G.W.; Austria, N.H. [1983]: A quasi-Newton method employing direct secant updates of matrix factorizations, SIAM Journal on Numerical Analysis 20, pp. 315–325

    Article  MathSciNet  MATH  Google Scholar 

  59. Kaczmarz, S. [1937]: Angenaherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Polon. Sei. Lett. A35, pp. 355–357

    Google Scholar 

  60. Kelley, C.T.; Sachs, E.W. [1987]: A quasi-Newton method for elliptic boundary value problems, SIAM Journal on Numerical Analysis 24, pp. 516–531

    Article  MathSciNet  MATH  Google Scholar 

  61. Lahaye, E. [1934]: Une méthode de résolution d’une catégorie d’equations transcendantes, Comptes Rendus Acad. Sci. Paris 198, pp. 1840–1842

    Google Scholar 

  62. Lopes, T.L.; Martínez, J.M. [1980]: Combination of the Sequential Secant Method and Broyden’s method with projected updates, Computing 25, pp. 379–386

    Article  MathSciNet  MATH  Google Scholar 

  63. Martínez, J.M. [1979a]: Three new algorithms based on the sequential secant method, BIT 19, pp. 236–243

    Article  MathSciNet  MATH  Google Scholar 

  64. Martínez, J.M. [1979b]: On the order of convergence of Broyden-Gay-Schnabel’s method, Commentationes Mathematicae Universitatis Carolinae 19, pp. 107–118

    Google Scholar 

  65. Martiínez, J.M. [1979c]: Generalization of the methods of Brent and Brown for solving nonlinear simultaneous equations, SIAM Journal on Numerical Analysis 16, pp. 434–448

    Article  MathSciNet  MATH  Google Scholar 

  66. Martínez, J.M. [1980]: Solving nonlinear simultaneous equations with a generalization of Brent’s method, BIT 20, pp. 501–510

    Article  MathSciNet  MATH  Google Scholar 

  67. Martínez, J.M. [1983]: A quasi-Newton method with a new updating for the LDU factorization of the approximate Jacobian, Matemática Aplicada e Computacional 2, pp. 131–142

    MATH  Google Scholar 

  68. Martínez, J.M. [1984]: A quasi-Newton method with modification of one column per iteration, Computing 33, pp. 353–362

    Article  MathSciNet  MATH  Google Scholar 

  69. Martínez, J.M. [1986a]: The method of Successive Orthogonal Projections for solving nonlinear simultaneous equations, Calcolo 23, pp. 93–105

    Google Scholar 

  70. Martínez, J.M. [1986b]: Solving systems of nonlinear simultaneous equations by means of an accelerated Successive Orthogonal Projections Method, Computational and Applied Mathematics 165, pp. 169–179

    Article  Google Scholar 

  71. Martínez, J.M. [1986c]: Solution of nonlinear systems of equations by an optimal projection method, Computing 37, pp. 59–70

    Article  MATH  Google Scholar 

  72. Martínez, J.M. [1987]: Quasi-Newton Methods with Factorization Scaling for Solving Sparse Nonlinear Systems of Equations, Computing 38, pp. 133–141

    Article  MathSciNet  MATH  Google Scholar 

  73. Martínez, J.M. [1990a]: A family of quasi-Newton methods for nonlinear equations with direct secant updates of matrix factorizations, SIAM Journal on Numerical Analysis 27, pp. 1034–1049

    Article  MathSciNet  MATH  Google Scholar 

  74. Martínez, J.M. [1990b]: Local convergence theory of inexact Newton methods based on structured least change updates, Mathematics of Computation 55, pp. 143–168

    Article  MathSciNet  MATH  Google Scholar 

  75. Martínez, J.M. [1991]: Quasi-Newton Methods for Solving Underdetermined Nonlinear Simultaneous Equations, Journal of Computational and Applied Mathematics 34, pp. 171–190

    Article  MathSciNet  MATH  Google Scholar 

  76. Martínez, J.M. [1992a]: On the relation between two local convergence theories of least change secant update methods, Mathematics of Computation 59, pp. 457–481

    Article  MathSciNet  MATH  Google Scholar 

  77. Martínez, J.M. [1992b]: A Theory of Secant Preconditioners, to appear in Mathematics of Computation

    Google Scholar 

  78. Martínez, J.M. [1992c]: On the Convergence of the Column-Updating Methods, Technical Report, Department of Applied Mathematics, University of Campinas

    Google Scholar 

  79. Martínez, J.M. [1992d]: Fixed-Point Quasi-Newton Methods, SIAM Journal on Numerical Analysis 29, pp. 1413–1434

    Article  MathSciNet  MATH  Google Scholar 

  80. Martínez, J.M. [1992e]: SOR-Secant Methods, to appear in SIAM Journal on Numerical Analysis

    Google Scholar 

  81. Martínez, J.M.; Zambaldi, M.C. [1992]: An inverse Column-Updating Method for solving Large-Scale Nonlinear Systems of Equations, to appear in Optimization Methods and Software

    Google Scholar 

  82. Matthies, H.; Strang, G. [1979]: The solution of nonlinear finite element equations, International Journal of Numerical Methods in Engineering 14, pp. 1613–1626

    Article  MathSciNet  MATH  Google Scholar 

  83. Mc Cormick, S.F. [1977]: The method of Kaczmarz and row-orthogonalization for solving linear equations and least-squares problems in Hilbert space, Indiana University Mathematical Journal 26, pp. 1137–1150.

    Article  MathSciNet  MATH  Google Scholar 

  84. Meyn, K-H [1983]: Solution of underdetermined nonlinear equations by stationary iteration, Numerische Mathematik 42, pp. 161–172

    Article  MathSciNet  MATH  Google Scholar 

  85. Milnor, J.W. [1969]: Topology from the differential viewpoint, The University Press of Virginia, Charlottesville, Virginia

    Google Scholar 

  86. Moré, J.J. [1989]: A collection of nonlinear model problems, Preprint MCS-P60–0289, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois

    Google Scholar 

  87. Nazareth, L.; Nocedal, J. [1978]: A study of conjugate gradient methods, Report SOL 78–29, Department of Operations Research, Stanford University

    Google Scholar 

  88. Nash, S.G. [1985]: Preconditioning of Truncated Newton methods, SIAM Journal on Scientific and Statistical Computing 6, pp. 599 -616

    Article  MathSciNet  MATH  Google Scholar 

  89. Ortega, J.M.; Rheinboldt, W.G. [1970]: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, NY

    MATH  Google Scholar 

  90. Ostrowski, A.M. [1973]: Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York.

    MATH  Google Scholar 

  91. Rail, L.B. [1984]: Differentiation in PASCAL-SC: Type Gradient, ACM Transactions on Mathematical Software 10, pp. 161–184.

    Article  Google Scholar 

  92. Rail, L.B. [1987]: Optimal Implementation of Differentiation Arithmetic, in Computer Arithmetic, Scientific Computation and Programming Languages, U. Külisch (ed.), Teubner, Stuttgart

    Google Scholar 

  93. Rheinboldt, W.C. [1986]: Numerical Analysis of Parametrized Nonlinear Equations, J. Wiley, Interscience, New York

    Google Scholar 

  94. Saad, Y., Schultz, M.H. [1986]: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Numerical Analysis 7, pp. 856–869

    MathSciNet  MATH  Google Scholar 

  95. Schmidt, J.W. [1987]: A class of superlinear decomposition methods in nonlinear equations, Numerical Functional Analysis and Optimization 9, pp. 629–645

    Article  MathSciNet  MATH  Google Scholar 

  96. Schmidt J.W., Hoyer, W., Haufe, Ch. [1985]: Consistent approximations in Newton-type decomposition methods, Numerische Mathematik 47, pp. 413–425

    Article  MathSciNet  MATH  Google Scholar 

  97. Schnabel, R.B., Frank, P.D. [1984]: Tensor methods for nonlinear equations, SIAM Journal on Numerical Analysis 21, pp. 815–843

    Article  MathSciNet  MATH  Google Scholar 

  98. Shamanskii, V.E. [1967]: A modification of Newton’s method, Ukrain Mat. Z. 19, pp. 133–138

    MathSciNet  Google Scholar 

  99. Schwandt, H. [1984]: An interval arithmetic approach for the construction of an almost globally convergent method for the solution of the nonlinear Poisson equation on the unit square, SIAM Journal on Scientific and Statistical Computing 5, pp. 427–452

    Article  Google Scholar 

  100. Schwetlick, H. [1978]: Numerische Losung Nichtlinearer Gleichungen, Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  101. Spedicato, E. [1991] (editor): Computer Algorithms for Solving Linear Algebraic Equations. The State of Art, NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 77, Springer Verlag, Berlin

    Google Scholar 

  102. Spedicato, E.; Chen, Z.; Deng, N. [1992]: A class of difference ABS-type algorithms for a nonlinear system of equations, Technical Report, Department of Mathematics, University of Bergamo

    Google Scholar 

  103. Tewarson, R.P. [1988]: A new Quasi-Newton algorithm, Applied Mathematics Letters 1, pp. 101–104

    MathSciNet  Google Scholar 

  104. Tewarson, R.P.; Zhang, Y. [1987]: Sparse Quasi-Newton LDU update, International Journal on Numerical Methods in Engineering 24, pp. 1093–1100

    Article  MATH  Google Scholar 

  105. Tompkins, C. [1955]: Projection methods in calculation, Proceedings Second Symposium on Linear Programming, Washington D.C., pp. 425–448

    Google Scholar 

  106. Walker, H.F.; Watson, L.T. [1989]: Least-Change Update Methods for underdetermined systems, Research Report, Department of Mathematics, Utah State University

    Google Scholar 

  107. Watson, L.T. [1979]: An algorithm that is globally convergent with probability one for a class of nonlinear two-point boundary value problems, SIAM Journal on Numerical Analysis 16, pp. 394–401

    Article  MathSciNet  MATH  Google Scholar 

  108. Watson, L.T. [1980]: Solving finite difference approximations to nonlinear two-point boundary value problems by a homotopy method, SIAM Journal on Scientific and Statistical Computing 1, pp. 467–480

    Article  MATH  Google Scholar 

  109. Toint, Ph.L. [1986]: Numerical solution of large sets of algebraic nonlinear equations, Mathematics of Computation 16, pp. 175–189

    Article  MathSciNet  Google Scholar 

  110. Watson, L.T. [1983]: Engineering applications of the Chow-Yorke algorithm, in Homotopy Methods and Global Convergence (B.C. Eaves and M.J. Todd eds.), Plenum, New York

    Google Scholar 

  111. Watson, L.T.; Billups, S.C.; Morgan, A.P. [1987]: Algorithm 652: HOMPACK: A suite of codes for globally convergent homotopy algorithms, ACM Trans. Math. Software 13, pp. 281–310

    Article  MathSciNet  MATH  Google Scholar 

  112. Watson, L.T.; Scott, M.R. [1987]: Solving spline-collocation approximations to nonlinear two-point boundary value problems by a homotopy method, Applied Mathematics and Computation 24, pp. 333–357

    Article  MathSciNet  MATH  Google Scholar 

  113. Watson, L.T.; Wang, C.Y. [1981]: A homotopy method applied to elastica problems, International Journal on Solid Structures 17, pp. 29–37

    Article  MathSciNet  MATH  Google Scholar 

  114. Wolfe P. [1959]: The secant method for solving nonlinear equations, Communications ACM 12, pp. 12–13

    Article  Google Scholar 

  115. Zambaldi, M.C. [1990]: Estruturas estáticas e dinamicas para resolver sistemas não lineares esparsos, Tese de Mestrado, Departamento de Matemática Aplicada, Universidade Estadual de Campinas, Campinas, Brazil

    Google Scholar 

  116. Zlatev, Z.; Wasniewski, J.; Schaumburg, K. [1981]: Y12M. Solution of large and sparse systems of linear algebraic equations, Lecture Notes in Computer Science 121, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Martínez, J.M. (1994). Algorithms for Solving Nonlinear Systems of Equations. In: Spedicato, E. (eds) Algorithms for Continuous Optimization. NATO ASI Series, vol 434. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0369-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0369-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6652-5

  • Online ISBN: 978-94-009-0369-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics