Possible Role of Ethanol-Derived Free Radicals in the Pathogenesis of Alcohol-Induced Liver Damage

  • E. Albano
  • P. Clot
  • M. Parola
  • M. U. Dianzani

Summary

In spite of decades of researches the biochemical mechanisms responsible for the hepatotoxic action consequent to alcohol abuse have not yet been completely elucidated [1]. Acetaldehyde, the main product of ethanol oxidation, is generally considered to be main responsible for the damaging effects associated to alcohol abuse [1]. In recent years, however, an increasing number of studies have suggested that, beside acetaldehyde, free radical intermediates might be involved in the pathogenesis of alcohol toxicity.

Keywords

Alcoholic Liver Disease Alcoholic Patient Cytochrome P4502E Tienilic Acid Hydroxyethyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lieber, CS.: Alcohol and the liver: 1994 update. Gastroenterol 106 (1994), 1085–1105.Google Scholar
  2. 2.
    Nordmann, R., Ribière, C, and Rouach, H.: Implication of free radical mechanisms in ethanol induced cellular injury. Free Rad. Biol. Med, 12 (1992), 219–240.PubMedCrossRefGoogle Scholar
  3. 3.
    Albano, E., Tomasi, A., Goria-Gatti, L., and Dianzani, M.U.: Spin trapping of free radical species produced during the microsomal metabolism of ethanol. Chem-Biol Interact 65 (1988), 223–234.PubMedCrossRefGoogle Scholar
  4. 4.
    Albano, E., Tomasi, A., Goria-Gatti, L., Persson, J.O., Terelius, Y., Ingelman-Sundberg, M., Dianzani, M.U.: Role of ethanol-inducible cytochrome P-450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochem Pharmacol 41 (1991), 1895–1902.PubMedCrossRefGoogle Scholar
  5. 5.
    Knecht, K.T., Bradfort, B.U., Mason, R.P. and Thurman, G.R.: In vivo formation of free radical metabolite of ethanol, Mol Pharmacol 38 (1990), 26–30.Google Scholar
  6. 6.
    Comoglio, A., Tomasi, A., Malandrino, S., Poli, G., and Albano, E.: Scavenging effect of silipide, a new silybin-phospholipid complex, on ethanol-derived free radicals. Biochem Pharmacol 50 (1995), 1313–1316.PubMedCrossRefGoogle Scholar
  7. 7.
    Albano, E., Clot, P., Morimoto, M., Tomasi, A., Ingelman-Sundberg, M., and French, S.W.: Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radicals in the development of liver damage in rats intragastrically fed with ethanol. Hepatol 23 (1996), 155–163.CrossRefGoogle Scholar
  8. 8.
    Morimoto, M., Hagbjvrk, A-L., Wan, Y.J.Y., Fu, P.C., Ingelman-Sundberg, M., Albano, E., Clot, P., and French, S.W.: Modulation of alcoholic liver disease by cytochrome P4502E1 inhibitors. Hepatol 2 (1995), 11610–1617.Google Scholar
  9. 9.
    Albano, E., Parola, M., Comoglio, A., and Dianzani, M.U.: Evidence for the covalent binding of hydroxyethyl radicals to rat liver microsomal proteins. Alcohol Alcohol 28 (1993), 453–459.PubMedGoogle Scholar
  10. 10.
    Moncada, C, Torres, V., Vargese, E., Albano, E., and Israel, Y.: Ethanol-derived immuno-reactive species formed by free radical mechanisms. Mol Pharmacol 46 (1994), 786–791.PubMedGoogle Scholar
  11. 11.
    Clot, P., Bellomo, G., Tabone, M., Aricö, S., and Albano, E.: Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroentrol 108 (1995), 201–207.CrossRefGoogle Scholar
  12. 12.
    Clot, P., Albano, E., Elliasson, E., Tabone, M., Aricö, S., Israel, Y., Moncada, C, and Ingelman-Sundberg, M.: Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigenic determinant for autoantibody formation among alcoholics. Gastroenterol (submitted).Google Scholar
  13. 13.
    Klassen, L.W., Tuma, D., and Sorrell, M.F.: Immune mechanisms of alcohol-induced liver disease. Hepatol 22 (1995), 355–357.Google Scholar
  14. 14.
    Tuma, D., and Klassen, L.W.: Immune response to acetaldehyde-protein adducts in alcoholic liver disease. Gastroenterol 103 (1992), 1969–1973.Google Scholar
  15. 15.
    Worral, S., De Jersey, J., Shanley, B.C., and Wilce, P.A.: Antibodies against acetaldehyde-modified epitopes: presence in alcoholic, non-alcoholic liver disease and control subjects. Alcohol Alcohol 25 (1990), 509–517.Google Scholar
  16. 16.
    Tsukamoto, H., Towner, S.J., Ciofalo, L.M., and French, S.W.: Ethanol-induced liver fibrosis in rats fed high fat diet. Hepatol 6 (1986), 814–822.CrossRefGoogle Scholar
  17. 17.
    Baune, P., Pessayre, D., Dansette, P., Mansuy, D., and Manns, M.: Autoantibodies against cytochrome P450: role in human diseases. Adv Pharmacol 30 (1994), 199–245.CrossRefGoogle Scholar
  18. 18.
    Pessayre, D.: Role of reactive metabolites in drug-induced hepatitis. J Hepatol 23 (1995), (suppl. 1), 16–24.PubMedGoogle Scholar
  19. 19.
    Izumi, N., Hasumura, Y., and Tacheuchi, J.: Lymphocyte cytotoxicity for autologous human hepatocytes in alcoholic liver disease. Clin Exp Immunol 53 (1983), 219–224.Google Scholar
  20. 20.
    Clot, P., Parola, M., Bellomo, G., Tabone, M., Aricö, S., Ingelman-Sundberg, M, and Albano, E. Human antibodies versus hydroxyethyl radical recognizes specific epitopes on the plasma membrane of isolated hepatocytes exposed to ethanol. Hepatol 22 (1995), 227A.1.Google Scholar
  21. 21.
    Letteron, P., Duchettelle, V., Berson, A., Fromenty, B., Fish, C, Degott, C, Benhamou, P. J., and Pessayre, D.: Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol abusers. Gut 34 (1993), 409–414.PubMedCrossRefGoogle Scholar
  22. 22.
    Clot, P., Tabone, M., Aricö, S., and Albano, E.: Monitoring oxidative damage in patients with liver cirrhosis and different daily alcohol intake, Gut 35(1994), 1637–1643.PubMedCrossRefGoogle Scholar
  23. 23.
    Tzukamoto, H, Hörne, W, Kamimura, S., Niemelä, O., Parkkila, S., Ylä-Herttuala, S., and Brittenham, GM.: Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96 (1995), 620–630.CrossRefGoogle Scholar
  24. 24.
    French, S.W., Wong, K., Jui, L., Albano, E., Hagbjörk, A.-L., and Ingelman-Sundberg, M.: Effect of ethanol on cytochrome P-450 (CYP2E1), lipid peroxidation and serum protein adduct formation in relation to liver pathology pathogenesis. Exp Mol Pathol 58 (1993), 61–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Kamimura, S., Gaal, K., Britton, SR., Bacon, B.R., Tridafilopoulos, G. and Tsukamoto, H.: Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: Association of lipid peroxidation with liver fibrogenesis. Hepatol 16 (1992), 448–453.CrossRefGoogle Scholar
  26. 26.
    Nanji, A.A., Khwaja, S., Tahan, S.R., and Sadrzadeh, H.S.M.: Plasma levels of a novel noncyclooxygenase-derived prostanoid (8-isoprostane) correlate with severity of liver injury in experimental alcoholic liver disease. J Pharmacol Exp Ther 269 (1994), 1280–1285.PubMedGoogle Scholar
  27. 27.
    Parola, M., Pinzani, M., Casini, A., Albano, E., Poli, G., Gentilini, A., Gentium, P., and Dianzani, M.U.: Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen a-1(1) gene expression in humal liver fat-storing cells. Biochem Biophys Res Commun 194 (1993), 1044–1050.PubMedCrossRefGoogle Scholar
  28. 28.
    Kamimura, S., and Tsukamoto, H.: Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease. Hepatol 21 (1995), 1304–1309.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • E. Albano
    • 1
  • P. Clot
    • 1
  • M. Parola
    • 2
  • M. U. Dianzani
    • 2
  1. 1.Department of Medical SciencesUniversity of TurinTurinItaly
  2. 2.Experimental Medicine and OncologyUniversity of TurinTurinItaly

Personalised recommendations