Oxygen-Carbon, Oxygen-Nitrogen and Oxygen-Dimer Defects in Silicon

  • C. P. Ewels
  • R. Jones
  • S. Öberg
Part of the NATO ASI Series book series (ASHT, volume 17)

Abstract

An ab initio local density functional cluster method, AIMPRO, is used to examine a variety of oxygen related point defects in silicon. In particular results are given for X-O n complexes where X is interstitial C, N or O. For n = 2, the first defect, C-O2 has been assigned to the P-centre giving a PL line at 0.767 eV and seen in Cz-Si annealed around 450°C. The second, N-O2, has properties consistent with a nitrogen related shallow thermal donor. We have also found that a (C-H)02i defect has very similar electronic properties, and this implies that shallow thermal donors do not have a unique composition. The structure and migration energy of the oxygen dimer is considered and the dimer is found to migrate very much faster than a single oxygen atom.

Keywords

Shallow Donor Thermal Donor Bond Centre Interstitial Carbon Local Vibrational Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bean, A. R. and Newman, R. C. (1970), Solid State Commun. 8, 175.ADSCrossRefGoogle Scholar
  2. 2.
    Davies G. and Newman R. C. (1994), in Handbook on Semiconductors 3, ed. by S. Mahajan, Elsevier, p. 1557.Google Scholar
  3. 3.
    Sun Q., Yao K. H., Gatos H. C., and Lagowski J. (1992), Effects of nitrogen on oxygen precipitation in silicon, J. Appl. Phys. 71.Google Scholar
  4. 4.
    Jones R., Öberg S., Berg Rasmussen F., and Bech Neilsen B. (1994), Identification of the Dominant Nitrogen Defect in Silicon, Phys. Rev. Lett. 72, 1882.ADSCrossRefGoogle Scholar
  5. 5.
    Brower K. L. (1982), Deep-level nitrogen centres in laser-annealed ion-implanted silicon, Phys. Rev. B 26, 6040.ADSCrossRefGoogle Scholar
  6. 6.
    Stein H. J. (1988), Implanted nitrogen in germanium, Appl. Phys. Lett. 52, 153.ADSCrossRefGoogle Scholar
  7. 7.
    Stein H. J. and Hahn S. K. (1990), Hydrogen-accelerated thermal donor formation in Czochralski silicon, Appl. Phys. Lett. 56, 63.ADSCrossRefGoogle Scholar
  8. 8.
    Berg Rasmussen F., Jones R. and Öberg S. (1994), Nitrogen in Germanium - identification of the pair defect, Phys Rev B 50 7, 4378.ADSCrossRefGoogle Scholar
  9. 9.
    Watkins G. D. and Brower K. L. (1976), Phys. Rev. Lett. 36, 1329.ADSCrossRefGoogle Scholar
  10. 10.
    Song L. W. and Watkins G. D. (1990), EPR identification of the single-acceptor state of interstitial carbon in silicon, Phys. Rev. B 42, 5759.ADSCrossRefGoogle Scholar
  11. 11.
    Wooley R., Lightowlers E. C., Tipping A. K., Claybourn M. and Newman R. C. (1986), Electronic and vibrational absorption of interstitial carbon in silicon, Mat. Sci. Forum 10–12, 929.CrossRefGoogle Scholar
  12. 12.
    Zheng J. F., Stavola M. and Watkins G. D. (1994), Structure of the neutral charge state of interstitial carbon in silicon, The Physics of Semiconductors, ed. D. J. Lockwood, World Scientific, Singapore, 2363.Google Scholar
  13. 13.
    Kimerling L. C., Blood P. and Gibson W. M. (1978), Inst. Phys. Conf. Ser. 46, 273.Google Scholar
  14. 14.
    Jones R., Leary P., Öberg S. and Torres V. J. T. (1995), Peculiarities of Interstitial Carbon and Di-Carbon Defects in Si, Mater. Sci. Forum 196–201, 785.CrossRefGoogle Scholar
  15. 15.
    Trombetta J. M. and Watkins G. D. (1988), Identification of an interstitial carbon interstitial oxygen complex in silicon, Mat. Res. Symp. 101 93.Google Scholar
  16. 16.
    Kürner W., Sauer R., Dörnen A. and Thonke K. (1989), Structure of the 0.767-eV oxygen-carbon luminescence defect in 450°C thermally annealed Czochralski-grown silicon, Phys Rev B 39 18, 13327.ADSCrossRefGoogle Scholar
  17. 17.
    Jones R. and Öberg S. (1992), Oxygen frustration and the interstitial carbon-oxygen complex in Si, Phys Rev Lett 68 1, 86.ADSCrossRefGoogle Scholar
  18. 18.
    Jones R., Ewels C., Goss J., Miro J., Deák P., Öberg S. and Berg Rasmussen F. (1994), Theoretical and isotopic infrared-absorption investigations of nitrogen-oxygen defects in silicon, Semicond. Sci. Tech. 9 2145–48ADSCrossRefGoogle Scholar
  19. 19.
    Berg Rasmussen F., Öberg S., Jones R., Ewels C., Goss J., Miro J., Deák P. (1996), The nitrogen-pair oxygen defect in silicon, these proceedings.Google Scholar
  20. 20.
    Kaneta C., Sasaki T., Katayama-Yoshida H. (1992), Atomic configuration, stabilizing mechanism, and impurity vibrations of carbon-oxygen complexes in crystalline silicon, Phys. Rev. B 46 13179.ADSCrossRefGoogle Scholar
  21. 21.
    Abe T., Masui T., Harada H. and Chikawa J. (1985), in VLSI Science and Technology, edited by Bullis W. M. and Broydo S. (Electrochemical Society, Pennington, NJ), p.543.Google Scholar
  22. 22.
    Stein H. J. (1986), Nitrogen in crystalline Si, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Mat. Res. Soc. Symp., Pittsburgh PA, ed Mikkelsen Jr. J. C., Pearton S. J., Corbett J. W. and Pennycook S. J., 67, 523.Google Scholar
  23. 23.
    Navarro H., Griffin J., Weber J. and Gentzelm L. (1986), New Oxygen Related Shallow Thermal Donor Centres in Czochralski-grown Silicon, Solid St. Commun. 58, 151.ADSCrossRefGoogle Scholar
  24. 24.
    Suezawa M., Sumino K., Harada H. and Abe T. (1986), Nitrogen-Oxygen complexes as shallow donors in silicon-crystals, Jpn. J. Appl. Phys. 25 L859.ADSCrossRefGoogle Scholar
  25. 25.
    Suezawa M., Sumino K., Harada H. and Abe T. (1988), The Nature of Nitrogen-Oxygen Complexes in Silicon, Jpn. J. Appl. Phys 27 62.ADSCrossRefGoogle Scholar
  26. 26.
    Griffin J. A., Navarro H., Weber J., Genzel L., Borenstein J. T., Corbett J. W. and Snyder L. C. (1986), The new shallow thermal donor series in silicon, J. Phys. C: Solid State Phys. 19 L579–L584.ADSCrossRefGoogle Scholar
  27. 27.
    Yang D., Que D. and Sumino K. (1995), Nitrogen effects on thermal donor and shallow thermal donor in silicon, J. Appl. Phys. 77 (2) 943.ADSCrossRefGoogle Scholar
  28. 28.
    Hara A., Fukuda T., Miyabo T., Hirai I. (1989), Electron Spin Resonance of Oxygen-Nitrogen Complex in Silicon, Jpn. J. Appl. Phys. 28 1, p. 142-143.ADSCrossRefGoogle Scholar
  29. 29.
    Hara A., Hirai L. and Ohsawa A. (1990), NL10 defects formed in Czochralski siliconcrystals, J. Appl. Phys. 67, 2462.ADSCrossRefGoogle Scholar
  30. 30.
    Hara A., Aoki M., Koizuka M. and Fukuda T. (1994), Model for NL10 thermal donors formed in annealed oxygen-rich silicon-crystals, J. Appl. Phys. 75 6.CrossRefGoogle Scholar
  31. 31.
    Chen C. S., Li C. F., Ye H. J., Shen S. C. and Yang D. R. (1994), Formation of nitrogen-oxygen donors in N-doped Czochralski-silicon crystal, J. Appl. Phys. 76 6.Google Scholar
  32. 32.
    Heijmink Liesert B. J., Gregorkiewicz T. and Ammerlaan C. A. J. (1993), Photo-luminescence of silicon thermal donors, Phys. Rev. B 47 (12) 7005.ADSCrossRefGoogle Scholar
  33. 33.
    Endrös A. (1989), Charge-state-dependent hydrogen-carbon-related deep donor in crystalline silicon, Phys Rev Lett 63, 70.ADSCrossRefGoogle Scholar
  34. 34.
    Endrös A. L., Krüher W. and Grabmaier J. (1991), Hydrogen in phosphorus-doped and carbon-doped crystalline silicon, Physica B 170, 365.ADSCrossRefGoogle Scholar
  35. 35.
    Safonov A. N., Lightowlers E. C., Davies G., Leary P., Jones R. and Öberg S. (1996), unpublished.Google Scholar
  36. 36.
    Minaev N. S. and Mudryi A. V. (1981), Phys. Stat. Solidi A 68, 561.ADSCrossRefGoogle Scholar
  37. 37.
    Bosomworth D. R., Hayes W., Spray A. R. L. and Watkins G. D. (1970), Absorption of oxygen in silicon in the near and the far infrared, Proc. Roy. Soc. A 317 133.ADSCrossRefGoogle Scholar
  38. 38.
    Stavola M., Patel J. R., Kimerling L. C. and Freeland P. E. (1983), Diffusivity of oxygen in silicon at the donor formation temperature, Appl. Phys. Lett. 42, 73.ADSCrossRefGoogle Scholar
  39. 39.
    Newman R. C., Tucker J. H. and Livingston F. M. (1983), Radiation-enhanced diffusion of oxygen in silicon at room-temperature, J. Phys. C: Solid State Phys. 16, L151.ADSCrossRefGoogle Scholar
  40. 40.
    Mikkelsen J. C. (1982), Excess solubility of oxygen in silicon during steam oxidation, Appl. Phys. Lett. 41 9, 871.ADSCrossRefGoogle Scholar
  41. 41.
    Lee S.-T. and Nichols D. (1985), Outdiffusion and diffusion mechanism of oxygen in silicon, Appl. Phys. Lett. 47 1001.ADSCrossRefGoogle Scholar
  42. 42.
    Newman R. C., Jones R. (1994), in Oxygen in Silicon, edited by Shimura F., Semiconductors and Semimetals, edited by Willardson R. K. and Beer A. C., 42, p. 289, Academic Press.Google Scholar
  43. 43.
    McQuaid S. A., Newman R. C., Tucker J. H., Lightowlers E. C., Kubiak A. and Goulding M. (1991), Concentration of atomic-hydrogen diffused into silicon in the temperature range 900–1300 °C, Appl. Phys. Lett. 58, 2933.ADSCrossRefGoogle Scholar
  44. 44.
    Estreicher S. K. (1990), Interstitial-O in Si and its interactions with H, Phys Rev. 41, 9886ADSCrossRefGoogle Scholar
  45. 45.
    Jones R., Öberg S. and Umerski A. (1992), Interaction of hydrogen with impurities in semiconductors, Mater. Sci. Forum 241 551.CrossRefGoogle Scholar
  46. 46.
    Corbett J. W., Watkins G. D. and McDonald R. S. (1964), New oxygen infrared bands in annealed irradiated silicon, Phys. Rev. B 135, A1381.ADSCrossRefGoogle Scholar
  47. 47.
    Gösele U. and Tan T. Y. (1982), Oxygen diffusion and thermal donor formation in silicon, Appl. Phys. A 28, 79.ADSCrossRefGoogle Scholar
  48. 48.
    Lee S.-T., Fellinger P. and Chen S. (1988), Enhanced and wafer-dependent oxygen diffusion in Cz-Si at 500–700 °C, J. Appl. Phys. 63 1924.ADSCrossRefGoogle Scholar
  49. 49.
    McQuaid S. A., Binns M. J., Londos C. A., Tucker J. H., Brown A. R. and Newman R. C. (1995), Oxygen loss during thermal donor formation in Czochralski silicon: New insights into oxygen diffusion mechanisms, J. Appl Phys. 77, 1427.ADSCrossRefGoogle Scholar
  50. 50.
    McQuaid S. A., Binns M. J., Londos C. A., Tucker J. H., Brown A. R. and Newman R. C. (1995), Oxygen loss during thermal donor formation in Czochralski silicon: New insights into oxygen diffusion mechanisms, J. Appl Phys. 77, 1427.ADSCrossRefGoogle Scholar
  51. 51.
    Snyder L. C., Corbett J. W., Deák P. and Wu R.(1988), On the Diffusion of Oxygen Dimre in a Silicon Crystal, Mat. Res. Symp. Proc. 104 179.CrossRefGoogle Scholar
  52. 52.
    Needels M., Joannopoulos J. D., Bar-Yam Y. and Pantelides S. T. (1991), Oxygen complexes in silicon, Phys. Rev B 43, 4208.ADSCrossRefGoogle Scholar
  53. 53.
    Jones R. (1995), Phil Trans. Roy. Soc. Lond. A 350 189.ADSCrossRefGoogle Scholar
  54. 54.
    Bachelet G. B., Hamann D. R. and Schlüter M. (1982), Pseudopotentials that work - from H to Pu, Phys. Rev. B 26 4199.ADSCrossRefGoogle Scholar
  55. 55.
    Ewels C., Jones R. and Öberg S. (1995), First Principles investigation of vacancy oxygen defects in Si, Mater. Sci. Forum 196–201, 1297.CrossRefGoogle Scholar
  56. 56.
    Martinov Yu. V., Gregorkiewicz T. and Ammerlaan C. A. J. (1995), Role of Hydrogen in the formation and structure of the Si-NLIO thermal donor, Phys. Rev. Lett. 74 2030.ADSCrossRefGoogle Scholar
  57. 57.
    Jones R., Öberg S. and Umerski A. (1991), Ab initio calculations on interstitial O clusters in Si, Mater. Sci. Forum 72 287, Trans Tech Publications, Ziirich.Google Scholar
  58. 58.
    Griffin J. A., Hartung J., Weber J., Navarro H. and Genzel L. (1989), Photothermal Ionisation Spectroscopy of Oxygen-Related Shallow Defects in Crystalline Silicon, Appl Phys. A. 48 41–47.ADSCrossRefGoogle Scholar
  59. 59.
    Gregorkiewicz T., Th Bekman H. H. P. and Ammerlaan C. A. J. (1988), Microscopic Structure of the NL10 heat-treatment center in silicon - study by electron-nuclear double-resonance, Phys. Rev. B 38, 3998.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • C. P. Ewels
    • 1
  • R. Jones
    • 1
  • S. Öberg
    • 2
  1. 1.Department of PhysicsUniversity of ExeterExeterUK
  2. 2.Department of MathematicsUniversity of LuleåLuleåSweden

Personalised recommendations