Skip to main content

Oxygen-Related Defects in Silicon: Studies Using Stress-Induced Alignment

  • Chapter
Early Stages of Oxygen Precipitation in Silicon

Part of the book series: NATO ASI Series ((ASHT,volume 17))

Abstract

Although the primary concern relating to a defect in a semiconductor is apt to be the effect it has on the electrical properties of the material, the experimental techniques of choice to identify it, to determine its structure, and unravel its role in various processes occuring in the material are primarily the spectroscopic ones, such as electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), local vibrational mode (LVM) spectroscopy, or absorption and luminescence associated with electronic transitions involving the defect. In the course of this workshop, we will have the chance to learn in detail how each of these have contributed to our understanding of oxygen and its complexes in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaplyanskii, A.A. (1964) Opt. Spektrosk., 16, p. 606 [Opt Spectrosc. (USSR), 16, p. 329].

    Google Scholar 

  2. Corbett, J.W. and Watkins, G.D. (1961) J. Phys. Chem. Solids 20, 319

    Article  ADS  Google Scholar 

  3. Corbett, J.W., McDonald, R.S. and Watkins, G.D. (1964) J. Phys. Chem. Solids 25, p. 873.

    Article  ADS  Google Scholar 

  4. Kaiser, W., Keck, W.P.H. and Lange, C.F. (1956) Phys. Rev. 101, 1264.

    Article  ADS  Google Scholar 

  5. Bond, W.L. and Kaiser, W. (1960) J. Phys. Chem. Solids 16, 44, and references therein.

    Article  ADS  Google Scholar 

  6. Hrostowski, H.J. and Kaiser, R.H. (1957) Phys. Rev. 107, 966.

    Article  ADS  Google Scholar 

  7. Southgate, P.D. (1960) Proc. Phys. Soc. Lond. 76, 385, 398.

    Article  ADS  Google Scholar 

  8. Haas, C. (1960) J. Phys. Chem. Solids 15, 108.

    Article  ADS  Google Scholar 

  9. Mikkelsen Jr., J.C. (1982) Appl. Phys. Lett. 40, 336.

    Article  ADS  Google Scholar 

  10. Lee, S.-T. and Nichols, D. (1985) Appl. Phys. Lett. 47, 1001.

    Article  ADS  Google Scholar 

  11. Lee, S.-T. and Nichols, D. (1986) in J.C. Nikkelsen, Jr., S.J. Pearton, J.W. Corbett and S.J. Penny cook (eds.) Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Mater. Res. Symp. Proc. 59, Pittsburgh, p. 31.

    Google Scholar 

  12. Takano, Y. and Maki, M. (1973) in H.R. Huff and R.R. Burgers (eds.) Semiconductor Silicon 1973, Electrochem. Soc., Pennington, p. 469.

    Google Scholar 

  13. Gass, J., Muller, H.H., Stussi, H. and Schweitzer, S. (1980) J. Appl Phys. 51, 2030.

    Article  ADS  Google Scholar 

  14. Stavola, M., Patel, J.R., Kimerling, L.C. and Freeland, P.E. (1983) Appl Phys. Lett. 42, 73.

    Article  ADS  Google Scholar 

  15. Newman, R.C., Tucker, J.H. and Livingston, F.M. (1983) J. Phys. C: Solid State Phys. 16, L151.

    Article  ADS  Google Scholar 

  16. Newman, R.C. and Jones, R. (1994) in F. Shimura (ed.) Oxygen in Silicon, Vol. 42 of Willardson, R.K., Beer, A.C. and Weber, E.R. (eds.) Semiconductors and Semimetals, Academic Press, San Diego, Chapter 8.

    Google Scholar 

  17. Saito, M. and Oshiyama, A. (1988) Phys. Rev. B 38, 10711.

    Article  ADS  Google Scholar 

  18. Needels, M., Joannopoulos, J.D., Bar-Yam, Y., Pantelides, S.T. and Wolfe, R.H. (1991) in P. D. Bristowe, J. E. Epperson, J. E. Griffith and Z. Lilienthal-Weber (eds.) Defects in Materials, Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, p. 103.

    Google Scholar 

  19. Jiang, Z. and Brown, R.A. (1995) Phys. Rev. Lett. 74, 2046.

    Article  ADS  Google Scholar 

  20. Ramamoorthy, M. and Pantelides, S.T. (1996) Phys. Rev. Lett. 76, 267.

    Article  ADS  Google Scholar 

  21. Tipping, A.K., Newman, R.C., Newton, D.C. and Tucker, J.H. (1986) Mater. Sc. Forum 10–12,887.

    Article  Google Scholar 

  22. Newman, R.C., Tucker, J.H., Brown, A.R. and McQuaid, S.A. (1991) J. Appl. Phys. 70, 3061.

    Article  ADS  Google Scholar 

  23. Watkins, G.D. and Corbett, J.W. (1961) Phys. Rev. 121, 1001.

    Article  ADS  Google Scholar 

  24. J. W. Corbett, G. D. Watkins, R. M. Chrenko and R. S. McDonald (1961) Phys. Rev. 121, 1015.

    Article  ADS  Google Scholar 

  25. Bean, A.R. and Newman, R.C. (1971) Sol. St. Commun. 9, 271.

    Article  ADS  Google Scholar 

  26. In reference [23], the results were expressed in terms of three parameters, M, M *, and N. We have converted these to the corresponding components of B by B 1 = N − Tr B, B 3 = −Tr B, and B 2 = M − Tr B for the neutral state, and B 2 = M + M * − Tr B for the negative state

    Google Scholar 

  27. Trombetta, J.M. and Watkins, G.D. (1987) Appl. Phys. Lett. 51, 1103.

    Article  ADS  Google Scholar 

  28. Trombetta, J.M. and Watkins, G.D. (1988) in M. Stavola, S.J. Pearton and G. Davies (eds.), Defects in Electronic Materials, Mater. Res. Soc. Symp. Proc. 104, Pittsburgh, p. 93.

    Google Scholar 

  29. Watkins, G.D. and Brower, K.L. (1976) Phys. Rev. Lett. 36, 1329.

    Article  ADS  Google Scholar 

  30. Thonke, K., Watkins, G., and Sauer, R. (1984) Sol. State Commun. 51, 127.

    Article  ADS  Google Scholar 

  31. Davies, G., Lightowlers, E.C., Wooley, R., Newman, R. and Oates (1984) J. Phys. C 17, L499.

    Article  ADS  Google Scholar 

  32. Jones, R. and Öberg, S. (1992) Phys. Rev. Lett. 68, 86.

    Article  ADS  Google Scholar 

  33. Müller, S.N., Sprenger,M., Sieverts, E.G. and Ammerlaan, C.A.J. (1978) Sol. St. Commun. 25, 987.

    Article  Google Scholar 

  34. Wagner, P. and Hage, J. (1989) Appl. Phys. A 49, 123.

    Article  ADS  Google Scholar 

  35. Gregorkiewicz, T., van Wezep, D.A., Bekman, H.H.P.Th. and Ammerlaan, C.A.J. (1987) Phys. Rev. B 35, 3810.

    Article  ADS  Google Scholar 

  36. Navarro, H., Griffin, J., Weber, J. and Genzel, L. (1986) Solid State Commun. 58, 151.

    Article  ADS  Google Scholar 

  37. Hartung, J. and Weber, J. (1993) Phys. Rev. B 48, 14161.

    Article  ADS  Google Scholar 

  38. Götz, W., Pensl, G. and Zulehner, W. (1992) Phys. Rev. B 46, 4312.

    Article  ADS  Google Scholar 

  39. Lee, K.M., Trombetta, J.M., and Watkins, G.D. (1985) in N.M. Johnson, S.G. Bishop and G.D.Watkins (eds.), Microscopic Identification of Electronic Defects in Semiconductors, Mater. Res. Soc. Symp. Proc. 46, Pittsburgh, p. 263.

    Google Scholar 

  40. Wagner, P., Gottschalk, H., Trombetta, J. and Watkins, G.D. (1987) J. Appl. Phys. 61, 346.

    Article  ADS  Google Scholar 

  41. Wagner, P., Gottschalk, H., Trombetta, J. and Watkins, G.D. (1986) Mater. Sci. Forum 10–12, 961.

    Article  Google Scholar 

  42. Wagner, P., Hage, J., Trombetta, J.M. and Watkins, G.D. (1992) Mater. Sci. Forum 83–87, 401., 961.

    Article  Google Scholar 

  43. Trombetta, J., Watkins, G.D., Hage, J. and Wagner, P. 1996, to be published.

    Google Scholar 

  44. Claybourn, M. and Newman, R.C. (1987) Appl. Phys. Lett. 51, 2197.

    Article  ADS  Google Scholar 

  45. Ourmazd, A., Schroter, W. and Bourret, A. (1984) J. Appl. Phys. 56, 1670.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Watkins, G.D. (1996). Oxygen-Related Defects in Silicon: Studies Using Stress-Induced Alignment. In: Jones, R. (eds) Early Stages of Oxygen Precipitation in Silicon. NATO ASI Series, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0355-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0355-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6645-7

  • Online ISBN: 978-94-009-0355-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics