Advertisement

Applicability of Stochastic Inverse Modelling, Aquifer Vulnerability Assessment, Groundwater Flow and Mass Transport Modelling in the Fractured Semi Confined Aquifer of Bagueixe, in Portugal

  • J. P. Lobo-Ferreira
Part of the NATO ASI Series book series (ASEN2, volume 20)

Abstract

The aim of this paper is to present an application of stochastic inverse modelling, aquifer vulnerability assessment and mathematical finite element groundwater flow and mass transport modelling to the semi confined fractured aquifer of Bagueixe, located in the North-eastern region of Portugal [23].

Keywords

Groundwater Flow Fracture Aquifer Groundwater Vulnerability Vulnerability Mapping Piezometric Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albinet, M and Margat, J. (1970) Cartographie de la vulnérabilité a la pollution des nappes d’eau souterraine, Bull. BRGM 2me Series 3(4).Google Scholar
  2. 2.
    Aller, L., Bennet, T., Lehr, J.H. and Petty, R.J. (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings, U.S. EPA Report 600/2-85/018.Google Scholar
  3. 3.
    Andersen, L.J. and Gosk, E. (1987) Application of Vulnerability Maps, in W. van Duijvenbooden and H.G. van Waegeningh (eds.), Vulnerability of Soil and Groundwater to Pollution, Proceedings and Information no. 38, TNO Committee on Hydrological Research.Google Scholar
  4. 4.
    Aust, H., Vierhuff, H. and Wagner, W. (1980) Grundwasservorkommen in der Bundesrepublik Deutschland.Google Scholar
  5. 5.
    Canter, L. Knox, R. and Fairchield, D. (1987) Ground Water Quality Protection, Chelsea, Mi., Lewis Publishers, Inc.Google Scholar
  6. 6.
    Carrera, L., and Neuman, S.P. (1986) Estimation of Aquifer Parameters under Transient and Steady-state Conditions: 1. Maximum Likelihood Method Incorporating Prior Information, Water Resour. Res 22(2), 199–210.CrossRefGoogle Scholar
  7. 7.
    Dagan, G. (1985) Analysis of flow through homogeneous random aquifers 2. Unsteady flow in confined formations, Water Resour. Res. 18(5), 1571–1585.CrossRefGoogle Scholar
  8. 8.
    Dagan, G. and Rubin, Y (1988). Stochastic Identification of Recharge, Transmissivity and Storativity in Aquifer Transient Flow: a Quasi-Steady Approach, Water Resour. Res. 24(10), 1968–1710.CrossRefGoogle Scholar
  9. 9.
    Duijvenbooden, W van and Waegeningh H.G. van, (eds), (1987) Vulnerability of Soil and Groundwater to Pollution, Proceedings and Information no. 38, TNO Committee on Hydrological Research.Google Scholar
  10. 10.
    Foster, S.S.D. (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, in W. van Duijvenbooden and H.G. van Waegeningh (eds.), Vulnerability of Soil and Groundwater to Pollution, Proceedings and Information no. 38, TNO Committee on Hydrological Research.Google Scholar
  11. 11.
    Fried, J.J. (1987) Groundwater resources in the European Community, 2nd phase: Vulnerability-Quality (unpublished).Google Scholar
  12. 12.
    Haertle, A. (1983) Method of working and employment of EDP during the preparation of groundwater vulnerability maps, IAHS Publ. 142(2).Google Scholar
  13. 13.
    Hashimoto, T., Stedinger, J.R. and Loucks D.P. (1982) Reliability, Resiliency and Vulnerability Criteria for Water Resource System Performance Evaluation, Water Resour. Res. 18(1), 14–20.CrossRefGoogle Scholar
  14. 14.
    Hidroprojecto, ACavaco and Tahal (1987) —Estudo de Viabilidade da Rega do Vale de Chaves e seus Vales Secundarios e Prospecção de Águas Subterrâneas em algumas Zonas de Trás-os-Montes; C — Prospecção de Águas Subterrâneas em algumas Zonas de Trás-os-Montes. Direcção Regional de Agricultura de Trás-os-Montes. Lisboa.Google Scholar
  15. 15.
    Hoeksema, R.J. and Kitanidis, P.K. (1985) Analysis of the Spatial Structure of Properties of Selected Aquifers. Water Resour Res. 21(4), 563–752.CrossRefGoogle Scholar
  16. 16.
    Huyakorn, P.S., White H.O. and Wadsworth T.D. (1987) TRAFRAP_WT, a Two-dimensional Finite Element Code for Simulating Fluid Flow and Transport of Radionuclides in Fractured Porous Media with Water Table Conditions. HydroGeologic Inc and Holcomb Research Institute, Indianapolis.Google Scholar
  17. 17.
    Kitanidis, P.K. and Vomvoris, E.G. (1983) A Geostatistical Approach to the Inverse Problem in Groundwater Modeling (Steady-State) and one-dimensional Simulations. Water Resources. 19(3), 677–690.CrossRefGoogle Scholar
  18. 18.
    Le Grand, H.E. (1983) A standardized system for evaluating waste disposal sites. NWWA, Worthington, Ohio.Google Scholar
  19. 19.
    Lobo-Ferreira, J.P. (1988) A comparative analysis of mass transport models and tracer experiments for groundwater pollution studies. Thesis Technical University Berlin, Federal Republic of Germany and Memória no 724 Laboratorio Nacional de Engenharia Civil, Lisboa.Google Scholar
  20. 20.
    Lobo-Ferreira, J.P. and Delgado-Rodrigues, J. (1988) BALSEQ — A model for the estimation of water balances, including aquifer recharge, requiring scarce hydrogeological data, in D. Radial (ed) Estimation of Natural Groundwater Recharge, Nato ASI Series Vol. 222 Kluwer Academic Publishers, Dordrecht.Google Scholar
  21. 21.
    Lobo-Ferreira, J.P. and Calado, F. (1989) Avaliação da Vulnerabilidade à Poluição e Qualidade das Águas Subterrâneas de Portugal, Parte A: Algarve e Alentejo. Lisboa, Laboratório Nacional de Engenharia Civil, Relatório 156/89 — NHHFGoogle Scholar
  22. 22.
    Lobo-Ferreira, J.P. and Cabrai, M. (1991) Proposal for an Operational Definition of Vulnerability for the European Community’s Atlas of Groundwater Resources, in the framework of the Meeting of the “European Institute for Water, Groundwater work Group Brussels, Feb. 1991”Google Scholar
  23. 23.
    Lobo-Ferreira, J.P. and Leitão, T.E. (1991) Aplicação da Modelação Estocástica Inversa e de um Modelo de Escoamento e de Transporte de poluentes em Meios Fracturados à Região de Bagueixe. Lisboa, Laboratório Nacional de Engenharia Civil, Memória no 768.Google Scholar
  24. 24.
    Lobo-Ferreira, J.P. and Oliveira, M.M. (1994) Síntese da Caracterização e do Mapeamento das Águas Subterrâneas de Portugal. Lisboa, Laboratório Nacional de Engenharia civil, Relatório 68/99 — GIAS.Google Scholar
  25. 25.
    Lobo-Ferreira, J.P., Oliveira, M.M. and Ciabatti, P.C. (1995) Desenvolvimento de um Inventário da Águas Subterrâneas de Portugal Volume 1 Lisboa, Laboratório Nacional de Engenharia Civil.Google Scholar
  26. 26.
    Lobo-Ferreira, J.P., Oliveira, M.M. and Moinante, M.J. (1995) Desenvolvimento de um Inventário da Águas Subterrâneas de Portugal Volume 2 Lisboa, Laboratório Nacional de Engenharia Civil.Google Scholar
  27. 27.
    Lobo-Ferreira, J.P., Novo, M.E., Leitão, T.E. and Tore, C. (1995) Desenvolvimento de um Inventário da Águas Subterrâneas de Portugal Volume 3 Lisboa, Laboratório Nacional de Engenharia Civil.Google Scholar
  28. 28.
    Ribeiro, A. (1974) Contribuition à L’Étude Tectonique de Trás-os-Montes Oriental. Tese de Douteramento. Memória nr 24 (Série Nova), Serviços Geológicos de Portugal, Lisboa.Google Scholar
  29. 29.
    Rubin, Y. and Dagan, G. (1987a) Stochastic identification of transmissivity and effective recharge in steady flow: 1. Theory, Water Resour. Res. 23(7), 1155–1192.Google Scholar
  30. 30.
    Rubin, Y. and Dagan, G. (1987b) Stochastic identification of transmissivity and effective recharge in steady flow: 2. Case study, Water Resour. Res. 23(7), 1193–1200.CrossRefGoogle Scholar
  31. 31.
    Rubin, Y. and Dagan, G. (1988) Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifers: 1. Constant head boundary, Water Resour. Res. 24(10), 1689–1697.CrossRefGoogle Scholar
  32. 32.
    Rubin, Y. and Dagan, G. (1989) Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifers: 2. Impervious boundary, Water Resour. Res. 25(4), 707–712.CrossRefGoogle Scholar
  33. 33.
    Rubin, Y., Lobo-Ferreira, J.P., Rodrigues, J.D. and Dagan, G. (1990) Estimation of the Hydraulic Parameters of the Rio Maior Aquifer in Portugal by Using Stochastic Inverse Modeling, J. of Hydrology, 118, 257–279.CrossRefGoogle Scholar
  34. 34.
    Schweppe, F.C. (1973) Uncertainty Dynamic System, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  35. 35.
    SGP (1972) Carta Geológica de Portugal à Escala 1/500 000. Lisboa, Serviços Geológicos de Portugal.Google Scholar
  36. 36.
    Smith, L. and Freeze, R.A. (1979) Stochastic analysis of steady state groundwater flow in a bounded domain: 2. Two-dimensional simulations, Water Resour. Res. 15(6), 1543–1559.CrossRefGoogle Scholar
  37. 37.
    Vermeulen, H., Lobo-Ferreira, J.P. and Oliviera, M.M. (1994) A method for Estimating Aquifer Recharge in DRASTIC Vulnerability Mapping, in Second European Conference on Advances in Water Resources Technology and Management, Lisbon June 1994. Rotterdam, A.A. Balkema, European Water Resources Association.Google Scholar
  38. 38.
    Yeh, W.W.G. (1986) Review of parameters identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res. 22(2), 95–108.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. P. Lobo-Ferreira
    • 1
  1. 1.Laboratório Nacional de Engenharia CivilLisboa CodexPortugal

Personalised recommendations