Consolidation of Vineyards, Mitigations, and Survival of the Common Wall Lizard (Podarcis Muralis) in Isolated Habitat Fragments

  • C. Bender
  • H. Hildenbrandt
  • K. Schmidt-Loske
  • V. Grimm
  • C. Wissel
  • K. Henle
Part of the The GeoJournal Library book series (GEJL, volume 35)

Abstract

Old vineyards with well structured walls and diverse habitat elements on steep south facing slopes are an important component of the cultural heritage along the river valleys of south-west Germany. Such vineyards provide valuable habitat to many rare and endangered xerothermic plant and animal species (Jätzold 1990). They require intensive manual labor as machinery can be used only to a limited extent. As a consequence of the marginal economic benefits, these vineyards are increasingly consolidated leading to structurally monotonous less steep vineyards. This process has led to a considerable reduction and isolation of the remaining valuable habitat and concomittantly to a serious decline of many species.

Keywords

Habitat Quality Male Territory Stone Wall Habitat Size Wall Lizard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbault, R. & Y.-P. Mou (1988). Population dynamics of the common wall lizard, Podarcis muralis, in Southwestern France. Herpetologica 44(1), 38–47.Google Scholar
  2. Bender, C. (1991). Genetik und Naturschutz. - In: K. Henle & G. Kaule (eds.). Arten- und Biotopschutzforschung für Deutschland. Forschungszentrum, Jülich, pp. 158–179.Google Scholar
  3. Bender, C. (1995). Demographische und populationsgenetische Grundlagen zum Schutz der Mauereidechse (Podarcis muralis). Verhandlungen der Gesellschaft für Ökologie 24, 187–191.Google Scholar
  4. Bender, C. (in press). Demography of a small population of the endangered common wall lizard (Podarcis muralis, Lacertidae) in Western Germany. - In: W. Böhme, W. Bischoff & T. Ziegler (eds). Herpetologia Bonnensis. Prague.Google Scholar
  5. Bender, C. & B. Streit (1993). Application of Random Amplified Polymorphic DNA in conservation biology of lizards. Verhandlungen der deutschen Gesellschaft für Zoologie 86, 43.Google Scholar
  6. BBA (1995). Pflanzenschutzmittelverzeichnis Teil 3. Weinbau. Saphir, Ribbesbüttel, pp 6.Google Scholar
  7. Blab, J., R. Günther & E. Nowak (1994): Rote Liste und Artenverzeichnis der in Deutschland vorkommenden Kriechtiere (Reptilia). - In: E. Nowak, J. Blab & R. Bless (eds.). Rote Liste der gefährdeten Wirbeltiere in Deutschland. Kilda, Greven, pp. 109–124.Google Scholar
  8. Boag, D.A. (1973). Spatial relationships among members of a population of wall lizards. Oecologia 12, 1- 13.CrossRefGoogle Scholar
  9. Bonnemayer, J.J.A.M. & P.J.M. Dietvorst (1979). De muurhagedis (Lacerta m. muralis) in Maastricht. Een autoecologisch onderzoek naar de essentiële criteria voor zijn bescherming. Afdeiling voor Dieroecologie, Katholieke Universiteit Nijmegen Rapport 160, 1–57.Google Scholar
  10. Braña, F. (1991). Summer activity patterns and thermoregulation in the wall lizard, Podarcis muralis. Herpetological Journal 1, 544–549.Google Scholar
  11. Caughley, G. (1980). Analysis of Vertebrate Populations. Wiley & Sons, New York.Google Scholar
  12. Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215–244.CrossRefGoogle Scholar
  13. Dexel, R. (1986a). Zur Ökologie der Mauereidechse Podarcis muralis an ihrer nördlichen Arealgrenze. I. Verbreitung, Habitat, Habitus und Lebensweise. Salamandra 22, 63–78.Google Scholar
  14. Dexel, R. (1986b). Zur Ökologie der Mauereidechse Podarcis muralis an ihrer nördlichen Arealgrenze. II. Populationsstruktur und -dynamik. Salamandra 22, 259–271.Google Scholar
  15. Edsman, L. (1990). Territoriality and competition in wall lizards. Akademitryck. Edsbruk, Sweden.Google Scholar
  16. Excoffier, L., P.E. Smouse & J.M. Quattro (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491.PubMedGoogle Scholar
  17. Gerken, B. (1988). Auen - Verborgene Lebensadern der Natur. Rombach, Freiburg.Google Scholar
  18. Gibbs, H.L., K.A Prior & P.J. Weatherhead (1994). Genetic analysis of populations of threatened snake species using RAPD markers. Molecular Ecology 3, 329–337.CrossRefGoogle Scholar
  19. Gruschwitz, M. & W. Böhme (1986). Podarcis muralis (LAURENTI, 1768) - Mauereidechse. - In: W. Böhme (ed.). Handbuch der Reptilien und Amphibien Europas. Bd. 2/11. Echsen III (Podarcis). -Aula, Wiesbaden, pp. 155–208.Google Scholar
  20. Haberbosch, R. & G. May-Stürmer (1987). Ökologische Ansprüche der Mauereidechse (Podarcis muralis) an Weinbergmauern auf der Gemarkung Heilbronn. Beiheft Veröffentlichungen Naturschutz und Landschaftspflege Baden-Württemberg 41, 407–426.Google Scholar
  21. Hadrys, H., M. Balick & B. Schierwater (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1, 55–63.PubMedCrossRefGoogle Scholar
  22. Harcourt, A.H. (1995). Population viability estimates: Ttheory and practice for wild gorilla populations. Conservation Biology 9,134–142.CrossRefGoogle Scholar
  23. Henle, K. (in press). Biodiversity, people, and a set of important connected questions. - In: D. Saunders, J.L. Craig & E.M. Mattiske (eds.). Nature Conservation 4. The Role of Networks of People. Surrey Beatty, Sydney.Google Scholar
  24. Henle, K. & B. Streit (1990). Kritische Beobachtungen zum Artenrückgang bei Amphibien und Reptilien und zu dessen Ursachen. Natur und Landschaft 65, 347–61.Google Scholar
  25. Hildenbrandt, H., C. Bender, V. Grimm & K. Henle (1995). Ein individuenbasiertes Modell zur Beurteilung der Überlebenschancen kleiner Populationen der Mauereidechse (Podarcis muralis). Verhandlungen der Gesellschaft fir Ökologie 24: 207–214.Google Scholar
  26. Honegger, R.E. (1981). Threatened Reptiles and Amphibians in Europe. AULA, Wiesbaden.Google Scholar
  27. Jätzold, R. (1990). Die Verbreitung und Zukunft der Riesling-Steillagen Deutschlands, insbesondere der noch terrassierten Hänge. Mainzer Geographische Studien 34, 177–194.Google Scholar
  28. Kaule, G. & K. Henle (1991). Überblick über Wissensstand und Forschungsdefizite. - In: K. Henle & G. Kaule (eds). Arten- und Biotopschutzforschung für Deutschland. Forschungszentrum, Jülich pp. 2–44.Google Scholar
  29. Konold, W. (1980). Zum Schutz anthropogener Ökosysteme am Beispiel aufgelassener Weinberge. Verhandlungen der Gesellschaft für Ökologie 8, 175–184.Google Scholar
  30. Licht, W. & U. Bernert (1987). Untersuchungen zur Vegetation und Standortsökologie von Weinbergsmauern - ein Beitrag zur Praxis der Flurbereinigung. Beitr. Landespflege Rheinland-Pfalz 11, 69–114.Google Scholar
  31. Linck, O. (1954). Der Weinberg als Lebensraum - am Beispiel des Neckarlandes. Verlag der Hohenloh’sehen Buchhandlung F. Rau, Öhringen.Google Scholar
  32. Lindenmayer, D.B. & H.P. Possingham (1995). The Risk of Extinction: Ranking Management Options for Leadbeater’s Possum. Centre for Resources and Environmental Studies, Canberra.Google Scholar
  33. Mayer, W. & F. Tiedemann (1982). Chemotaxonomical investigations in the collective genus Lacerta (Lacertidae; Sauria) by means of protein electrophoresis. Amphibia-Reptilia 2, 349–355.CrossRefGoogle Scholar
  34. Obermann, H.-W. & M. Gruschwitz (1992). Ökologische Untersuchungen zur Fauna von Trockenmauern in Weinanbaugebieten, dargestellt am Beispiel einer Weinbergslage an der Mosel. Fauna Flora Rheinland-Pfalz 6, 1085–1139.Google Scholar
  35. Pollock, K.H., J.D. Nichols, C. Brownie & J.E. Hines (1990). Statistical inference for capture-recapture experiments. Wildlife Monographs 107, 1–97.Google Scholar
  36. Renshaw, E. (1991). Modelling Biological Populations in Space and Time. University Press, Cambridge.Google Scholar
  37. Schierwater, B. (1995). Arbitrary amplified DNA in systematics and phylogenetics. Electrophoresis 16, 1643–1647.PubMedCrossRefGoogle Scholar
  38. Schlötterer, C., B. Amos & D. Tautz (1991). Conservation of polymorphic simple sequence loci in cetacean species. Nature 354, 6365.Google Scholar
  39. Schmidt-Loske, K. (in press). Some preliminary remarks on habitat use of the wall lizard, Podarcis muralis (LAURENTI, 1768) in wine growing parts of the Ahr valley near Bad-Neuenahr-Ahrweiler (Rhine- land-Palatinate). - In: W. Böhme, W. Bischoff & T. Ziegler (eds). Herpetologia Bonnensis. Prague.Google Scholar
  40. Shaffer, M.L. (1981). Minimum population sizes for species conservation. Bioscience 31, 131–134.CrossRefGoogle Scholar
  41. Strijbosch, H., J.J.A.M. Bonnemayer & P.J.M. Dietvorst (1980a). De muurhagedis (Podarcis muralis) in Maastricht. Deel 2: Biotoop en Biotoopgebruik. Natuurhistorishes Maandblad 69 (12), 240–246.Google Scholar
  42. Strijbosch, H., J.J.A.M. Bonnemayer & P.J.M. Dietvorst (1980b). The northernmost population of Podarcis muralis (Lacertilia, Lacertidae). Amphibia-Reptilia 1, 161–172.CrossRefGoogle Scholar
  43. Van de Bund, C.F. (1964). Vierde herpetogeografisch verslag. Lacerta, 22, 1–72.Google Scholar
  44. Williams, J.K.G., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535.PubMedCrossRefGoogle Scholar
  45. Wissel, C., T. Stephan & S.-H. Zaschke (1994). Modelling extinctions of small populations. - In: H. Remmert (ed.). Minimum Animal Populations. Springer, Berlin, pp. 67–103Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • C. Bender
    • 1
  • H. Hildenbrandt
    • 2
  • K. Schmidt-Loske
    • 3
  • V. Grimm
    • 2
  • C. Wissel
    • 2
  • K. Henle
    • 4
  1. 1.Department of Ecology and EvolutionZoological Institute, Johann Wolfgang-Goethe-UniversityFrankfurtGermany
  2. 2.Section Ecological ModellingCentre for Environmental Research (UFZ)LeipzigGermany
  3. 3.Zoological Research Institute and Museum Alexander KönigBonnGermany
  4. 4.Department Semi-natural LandscapesCentre for Environmental Research (UFZ)LeipzigGermany

Personalised recommendations