On the Boundary Layer for Dilatant Fluids

  • S. N. Antontsev
  • J. I. Diaz
  • S. I. Shmarev
Conference paper


This paper deals with the boundary layer associated to a class of non Newtonian fluids, i. e., fluids for which the stress tensor T, at given temperature and pressure, is not a linear function of the spatial variation of the velocity L ≐ ∇v. This class of fluids is relevant in many contexts: chemical engineering (polymer melts, polymer solutions, suspensions, lubricants, paints, etc.), liquid crystals, oriented media, fibrous media, animal blood etc. (see, e. g., Schowalter [28] and Narasimhan [17]). The above notion of non-Newtonian fluids fails to bound the subject. An important subclass is the so called purely viscous non Newtonian fluids.


Boundary Layer Parabolic Equation Newtonian Fluid Energy Method Boundary Layer Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antontsev, S.N.: On the localization of solutions of nonlinear degenerate elliptic and parabolic equations. Dokl. Akad. Nauk. SSSR, 1981, 260, No. 6, pp. 1289–1293. (in Russian; English translation in Soviet Math. Dokl., 1981, 24, No. 2, pp. 420–424).MathSciNetGoogle Scholar
  2. 2.
    Antontsev, S.N. and Diaz, J.I.: Application of an Energy Method in the Localization of the Solutions of the Equations of Continuous medium mechanics. (Russian). Dokl. Akad. Nauk. SSSR. 1988. Vol 303. No 2. pp. 320–325. (English transl. in Soviet Phys. Dokl. 1988. Vol 33. No 11. pp. 813–816.).Google Scholar
  3. 3.
    Antontsev, S.N. and Diaz, J.I.: New results on localization of solutions of nonlinear elliptic and parabolic equations obtained by the energy method. Dokl. Akad. Nauk. SSSR. 1988, Vol. 303, No. 3, pp. 320–325. (English translation in Soviet Math. Dokl. 1988, Vol. 33, No. 3,pp. 535–539).Google Scholar
  4. 4.
    Antontsev, S.N. and Diaz, J.I.: The Energy Method and the Localization of Solutions of Equations in Continuum Mechanics. (Russian). Zh,. Prikl. Mekh,. i. Tekhn Fiz. 1989. No 2. pp. 18–25. (English transl. in J. Appl. Mech,. Tech. Phys. 1989. Vol 30. No 2. pp. 182–189).MathSciNetGoogle Scholar
  5. 5.
    Antontsev, S.N. and Diaz, J.I.: On Space or Time Localization of Solutions of Nonlinear Elliptic or Parabolic Equations Via Energy Methods. (English). In Recent Advances In Nonlinear Elliptic and Parabolic Problems, Ph. Benilan, L.C. Evans and M. Pierre eds. Pitman Research Notes In Mathematics. Series 208, 1989, pp. 3–14.Google Scholar
  6. 6.
    Antontsev, S.N. and Diaz, J.I.: Space and Time Localization in the Flow of Two Immiscible Fluids Through a Porous medium: Energy Method Applied to Systems. Nonlinear Analysis, Theory, Methods and Applications, 1991, Vol 16. No 4. pp. 299–313.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Antontsev, S.N., Diaz, J.I. and Shmarev, S.I.: New applications of energy methods to parabolic free boundary Problems. Uspekhi Mat. Nauk.,1991, 46, No. 6 (282), pp. 181–182. (in Russian; English translation: in Russian Mathematical Surveys, 1991, 46, No. 6, pp. 193–194).Google Scholar
  8. 8.
    Antontsev, S.N., Diaz, J.I. and Shmarev, S.I.: The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms. Annales de la Fac. des Sciences de Toulouse, 1995, 4, No. 1, pp. 5–30.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Antontsev, S.N., Shmarev, S.I.: Local energy method and vanishing of weak solutions of nonlinear parabolic equations. Dokl. Akad. Nauk. SSSR, 1991, 318, No. 4. pp. 777–781. (in Russian; English translation in Soviet Math. Doklady, 1991, No. 43).MathSciNetGoogle Scholar
  10. 10.
    Benilan, Ph. and Crandall, M.G.: The continuous dependence on φ of the solutions of u t − ∆φ(u) = 0, Indiana Univ. Math. J., No. 30, 1981, pp. 161–177.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bernis, F.: Compactness of the support for some nonlinear elliptic problems of arbitrary order in dimension n, Comm. Partial Differential Equations 1984, 9, pp. 271–312.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bernis, F.: Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption, Proc. Royal Soc. Edinburgh 104A, 1986, pp. 1–19.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bernis, F.: Qualitative properties for some nonlinear higher order degenerate parabolic equations, Houston J. Math., 14, 1988, pp. 319–352.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Diaz, J.I.: Nonlinear partial differential equations and free boundaries. Research Notes in Math. No. 106. Pitman, 1985.zbMATHGoogle Scholar
  15. 15.
    Diaz, J.I. and Liñan, A.: Movimiento de descarga de gases en conductos largos: Modelizacion y estudio de una ecuacion parabolica doblemente no lineal. Actas de la Reunion Matematica en Honor de A. Dou, J.I. Diaz and J.M. Vegas eds., Editorial Universidad Complutense, Madrid, 1989, pp. 95–119.Google Scholar
  16. 16.
    Diaz, J.I. and Veron, L.: Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. Trans. Amer. Math. Soc., 1985, 290, No. 2, pp. 787–814.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Narasimhan, M.N.L.: Principles of Continuum Mechanics, John Wiley and Sons, Inc. New York, 1993.zbMATHGoogle Scholar
  18. 18.
    Oleinik, O. A.: On a system of equations in boundary layer theory, Zhurn. Vyvhslit. Mat. Mat. Fiz. 1963, 3, pp. 489–507[Russian]. Engl. transl. USSR Comput. Math. Math. Phys. 1963, 3, pp. 650–703.MathSciNetGoogle Scholar
  19. 19.
    Oleinik O. A.: Mathematical problems of boundary layer theory. Minneapolis. Univ. of Minnesota. 1969.Google Scholar
  20. 20.
    Palymsky I. B.: Some qualitative properties of the solutions of equations of nonlinear heat conductivity with absorption. Chislennye metody mekhaniki sploshnoi sredy, 1985, Vol 16. No. 1, pp. 136–145.MathSciNetGoogle Scholar
  21. 21.
    Peletier, L.A.: On the asymptotic behavior of velocity profiles in laminar boundary layers, Arch. Rat. Mech. Anal. 45, 1972, pp. 110–119.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Prandtl, L.: Über Flussigkeits-be wegungen bei sehr kleiner Reibung. In Verh. II. Int. Math-Kongr. Heidelberg,1904, pp. 484–494. Leipzig: Teubner.Google Scholar
  23. 23.
    Rykov, Yu.G.: On the behavior of generalized solutions of degenerating parabolic equations with anisotropic non-power nonlinearities with the growth of time. Differential Equations and Their Applications. Moscow. Gos. Univ. Moscow. 1984, pp. 160–164.Google Scholar
  24. 24.
    Rykov, Yu.G.: On the finite velocity of propagation of perturbations and inertia for generalized solutions of degenerating quasilinear equations. Differential Equations and Their Applications. Moscow. Gos. Univ. Moscow. 1984, pp. 160–164.Google Scholar
  25. 25.
    Samokhin, V.N.: Generalized solutions and extension of the boundary layers of a pseudo-plastic liquid. Trudy. Sem. im. I. G. Petrovskogo, No. 3, 1978, pp. 161–175.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Samokhin, V.N.: A system of steady-state boundary layer for a dilatantous medium. Trudy Seminara imeni I. G. Petrovskogo. No. 14, 1989, pp. 89–109. (English transi. 1990, pp. 2358–2373 ).zbMATHGoogle Scholar
  27. 27.
    Schlichting, H.: Boundary-Layer Theory, McGraw-Hill Company, New York, 7th edition, 1979zbMATHGoogle Scholar
  28. 28.
    Schowalter, R.: Mechanics of non-Newtonian Fluids, Pergamon Press, Oxford, 1978.Google Scholar
  29. 29.
    Serrin, J.: On the mathematical basis for Prandtl’s boundary layer theory: An example. Arch. Rat. Mech. Anal. 28, 1967, pp. 217–225.MathSciNetGoogle Scholar
  30. 30.
    Shmarev, S.I.: Local properties of solutions of nonlinear equation of heat conduction with absoption. Dinamika Sploshnoi Sredy, Novosibirsk, 1990, 95, pp. 28–42. (in Russian).Google Scholar
  31. 31.
    Straughan, B.: Instability, nonexistence and weighted energy methods in fluid dynamics and related theories. Pitman Advanced Publishing Program. Research Notes in Math., 74, 1982.zbMATHGoogle Scholar
  32. 32.
    Straughan, B.: The energy method, stability and nonlinear convection. Applied Mathematical. Sciences. 1991. Springer Verlag.Google Scholar
  33. 33.
    von Karman, Th.: Über laminare und turbulente Reibung, Z. Angew. Math. Mech. 1 1927, pp. 233–252.CrossRefGoogle Scholar
  34. 34.
    von Mises, R.: Bemerkungen zur Hydrodynamic, Z. Angew. Math. Mech. 7 1927, pp. 425–431.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • S. N. Antontsev
    • 1
    • 2
  • J. I. Diaz
    • 3
  • S. I. Shmarev
    • 4
    • 5
  1. 1.Lavrentyev Institute of HydrodynamicsNovosibirskRussia
  2. 2.Universidade da Beira InteriorCovilhãPortugal
  3. 3.Departamento de Matemática AplicadaUniversidad Complutense de MadridMadridSpain
  4. 4.NovosibirskRussia
  5. 5.University of OviedoOviedoSpain

Personalised recommendations