The Nature of Interstellar Dust in Local Group Galaxies from Observations of Extinction and Polarization

  • Geoffrey C. Clayton
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 209)


The assumption of Galactic Interstellar Dust properties in modeling the effects of Extragalactic Interstellar Dust will lead to large errors. Properties of Galactic dust have been amenable to study through observations of scattering and absorption along individual sightlines toward point sources, and through high spatial resolution observations of extended sources. Observations of Interstellar Dust in other galaxies are much more difficult since the light detected in a given aperture is the sum of a complex geometry of sources and dust which can only be separated using Radiative Transfer models. With the aid of NASA observatories such as Hubble Space Telescope (HST) and Astro-2, Interstellar Dust in Local Group galaxies can be subjected to the same kind of observations used to study Galactic dust. Individual sightlines can be observed at high spatial resolution allowing simple geometries to be studied.


Wavelength Dependence Cloud Dust Hubble Space Telescope Radiative Transfer Model Magellanic Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bianchi, L., Clayton, G.C., Hutchings, J.B., Massey, P., & Bohlin, R.C. 1996, ApJ, submittedGoogle Scholar
  2. Blair, W., & Kirshner, R. 1985, ApJ, 289, 582CrossRefADSGoogle Scholar
  3. Brownlee, D.E. 1987, in Interstellar Processes, ed. D.J. Hollenbach & H.A. Thronson (Dordrecht: Reidel), p. 513CrossRefGoogle Scholar
  4. Cardelli, J.A., Clayton, G.C., & Mathis, J.S. 1989, ApJ, 345, 245CrossRefADSGoogle Scholar
  5. Cardelli, J.A., & Clayton, G.C. 1991, AJ, 101, 1021CrossRefADSGoogle Scholar
  6. Clayton, G.C., Martin, P.G., & Thompson 1983, ApJ, 265, 194CrossRefADSGoogle Scholar
  7. Clayton, G.C., & Martin, P.G. 1985, ApJ, 288, 558CrossRefADSGoogle Scholar
  8. Clayton, G.C., et al. 1992, ApJ, 385, L53CrossRefADSGoogle Scholar
  9. Clayton, G. C., Wolff, M. J., Allen, R. & Lupie, O. L. 1995, ApJ, 445, 947CrossRefADSGoogle Scholar
  10. Clayton, G.C., Green, J., Wolff, M.J., Zellner, N.E.B., Code, A.D., & Davidsen, A.F.1996, ApJ, in press (March 20)Google Scholar
  11. Fitzpatrick, E.L. 1985, ApJ, 299, 219CrossRefADSGoogle Scholar
  12. Fitzpatrick, E.L. 1986, AJ, 92, 1068CrossRefADSGoogle Scholar
  13. Hutchings, J., Bianchi, L., Lamers, J., Massey, P., & Morris, S 1992, ApJ, 400, L35CrossRefADSGoogle Scholar
  14. Kim, S.-H., Martin, P.G. & Hendry, P.D. 1994, ApJ, 422, 167CrossRefADSGoogle Scholar
  15. Kim, S.-H., & Martin, P.G. 1994, ApJ, 431, 783CrossRefADSGoogle Scholar
  16. Martin, P. G., & Shawl, S.J. 1982, ApJ, 253, 86CrossRefADSGoogle Scholar
  17. Mathis, J. S., & Cardelli 1992, ApJ, 398, 610CrossRefADSGoogle Scholar
  18. Mathis, J. S., Rumpl, W., & Nordsieck, K.H. 1977, ApJ, 217, 425CrossRefADSGoogle Scholar
  19. Mathis, J. S., & Whiffen, G. 1989, ApJ, 341, 808CrossRefADSGoogle Scholar
  20. Savage, B.D., & Mathis, J.S. 1979, ARA&A, 17, 73CrossRefADSGoogle Scholar
  21. Seaton, M.J. 1979, MNRAS, 187, 73ADSGoogle Scholar
  22. Somerville, W.B. et al. 1994, ApJ, 427, L47CrossRefADSGoogle Scholar
  23. Whittet, D.C.B., Martin, P.G., Hough, J.H., Rouse, M.F., Bailey, J.A., & Axon, D.J. 1992, ApJ, 386, 562CrossRefADSGoogle Scholar
  24. Wilking, B. A., Lebofsky, M. J., & Rieke, G. H. 1982, AJ, 87, 695CrossRefADSGoogle Scholar
  25. Wolff, M. J., Clayton, G. C., & Meade, M. R. 1993, ApJ, 403, 722CrossRefADSGoogle Scholar
  26. Wolff, M. J. et al. 1994, ApJ, 423, 412CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Geoffrey C. Clayton
    • 1
  1. 1.Center for Astrophysics and Space AstronomyUniversity of ColoradoBoulderUSA

Personalised recommendations