Advertisement

Overview of Polymer Micelles

  • Z. Tuzar
Part of the NATO ASI Series book series (NSSE, volume 327)

Abstract

Micelles of block and graft copolymers belong to a broad family of polymer colloids. This family covers self-associating, self-assembling or self-organizing polymeric systems that possess surface-active or colloidal properties. The term “polymer colloids” may sound controversial. At the beginning of the polymer science as a new field of chemistry, most chemists claimed that large organic molecules, i.e., macromolecules or polymers, did not exist. Seventy years ago, even the most enlightened organic chemists believed that cellulose, proteins and polymers synthesized in laboratory were only colloids, i.e., aggregates of small organic molecules. Later, when the existence of macromolecules was undisputably recognized, polymer science was treated, in many textbooks of physical chemistry in chapters about colloids. That is why some polymer scientists dislike the word “colloid” and are reluctant to accept the name of a 30 years old branch of polymer science, polymer colloidics.

Keywords

Block Copolymer Dynamic Light Scattering Graft Copolymer Triblock Copolymer Diblock Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merrett, F.M. (1957) Graft copolymers with preset molecular architecture,J. Polym. Sci. 24, 467–477.CrossRefGoogle Scholar
  2. 2.
    Hartley F.D. (1959) Graft copolymer formation during the polymerization of vinyl acetate in the presence of polyvinylalcohol, J. Polym. Sci.34, 397 417.CrossRefGoogle Scholar
  3. 3.
    Schlick, S. and, Levy, M. (1960) Block-polymers of styrene and isoprene with variable distribution of monomers along the polymeric chain,J. Phys. Chem. 64, 883–886.CrossRefGoogle Scholar
  4. 4.
    Riess, G., Hourtrez, G., and Bahadur, P. (1985) Block copolymers, in H.F. Mark and N.M. Bikales (eds.),Encyclopedia of Polymer Science and Engineering, 2nd Edition, Wiley, New York, pp. 324–434.Google Scholar
  5. 5.
    Tuzar, Z. and Kratochvfl, P. (1993) Micelles of block and graft copolymers in solutions,Surface and Colloid Science 15, 1–83.CrossRefGoogle Scholar
  6. 6.
    Halperin A., Tirrell M., and Lodge T.P. (1992) Tethered chains in polymer microstructures,Adv. Polym. Sci. 100, 31–71.CrossRefGoogle Scholar
  7. 7.
    Tuzar, Z., Pleštil, J., Koňák C., Hlavatá D., and Sikora, A. (1983)Structure and hydrodynamic properties of poly [styrene-6-(ethene-co-butene)-6-styrene] micelles in 1,4-dioxane,Makromol. Chem.184, 2111–2121.CrossRefGoogle Scholar
  8. Gallot, B. and Sadron, Ch. (1971) A new kind of polymeric material,Macromolecules4, 514–515. Google Scholar
  9. 9.
    Bresler, S.E., Pyrkov, L.M., Frenkel, S.Ya., Laius L.A., and Klenin S.I. (1962) Molecular conformation of 4/5 block copolymer of styrene and isoprene,Vysokomol. Soyed. 4, 250–255.Google Scholar
  10. 10.
    Selb, J. and Gallot, Y. (1981) Comportement de copolymeres grefFes en milieu solvant selective des greffons,Makromol. Chem.182, 1775–1786.CrossRefGoogle Scholar
  11. 11.
    Price, C. and Woods, D. (1973) Synthesis and solution behavior of polystyrene-g-polyisoprene copolymers, Polymer 14, 82–86.CrossRefGoogle Scholar
  12. 12.
    Spěác;ě, J. (1982) 1H NMR study of styrene-butadiene block copolymer micelles in selective solvents,Makromol. Chem., Rapid Commun.4, 697–703.Google Scholar
  13. 13.
    Pleštil J. and Baldrian, J. (1975) Determination of the structure parameters of styrene/butadiene block copolymer in heptane by means of small-angle X-ray scattering,Makromol. Chem. 176, 1009–1028.CrossRefGoogle Scholar
  14. 14.
    Procházka, K., Bednaf, B., Mukhtar, E., Svoboda, P., Trěá, J., and Almgren, M. (1991) Energy transfer in block copolymer micelles,J. Phys. Chem.95, 4563–4568.CrossRefGoogle Scholar
  15. 15.
    Wang Y., Kausch, C.M., Chun, M., Quirk, R.P., and Mattice, W.L. (1995) Exchange of Chains between micelles of labeled polystyrene-6/ocA;-poly(oxyet>hylene) as monitored by nonradiative singlet energy transfer, Macromolecules28, 904–911.CrossRefGoogle Scholar
  16. 16.
    Tian, M., Qin, A., Ramireddy, C., Webber, S.E., Munk, P., Tuzar, Z. and Prochazka, K. (1993) Hybridization of block copolymer micelles,Langmuir9, 1741–1748.CrossRefGoogle Scholar
  17. 17.
    Pacovská, M., Procházka, K., Tuzar, Z. and Munk, P. (1993) Formation of block copolymer micelles: A sedimentation study,Polymer34, 4585–45CrossRefGoogle Scholar
  18. 18.
    Bednář, B., Edwards, K., Almgren, M., Tormod, S., and Tuzar, Z. (1988) Rates of association and dissociation of block copolymer micelles: Light-stattering stopped-flow measurements,Makromol. Chem., Rapid Commun. 9, 758–790.CrossRefGoogle Scholar
  19. 19.
    Leibler, L., Orland, H,. and Wheeler, J.C. (1983) Theory of critical micelle concentration for solutions of block copolymers,J. Chem. Phys.79, 3550–3557.CrossRefGoogle Scholar
  20. 20.
    Noolandi, J. and Hong, K.M. (1983) Theory of block copolymer micelles in solution,Macromolecules 16, 1443–1448.CrossRefGoogle Scholar
  21. 21.
    Munch, M.R. and Gast, A.P. (1988) Block copolymers at interfaces 1. Micelle formation,Macromolecules 21, 1360–1366.CrossRefGoogle Scholar
  22. 22.
    Nagarajan, R. and Ganesh, K. (1989) Block copolymer self-assembly in selective solvents: Spherical micelles with segregated cores,J. Chem. Phys, 90, 5843–5856.CrossRefGoogle Scholar
  23. 23.
    Zhulina, Y.B. and Birshtein, T.M. (1985) Conformations of molecules of block copolymers in selective solvents (micellar structures), Vysokomol. Soyed. 27, 511– 517.Google Scholar
  24. 24.
    Halperin, A. (1987) Polymeric micelles: A star model,Macromolecules20, 2943– 2946.CrossRefGoogle Scholar
  25. 25.
    Marques, C.N. (1988) Adsorption of block copolymers in selective solvents,Macromolecules21, 1051–1059.CrossRefGoogle Scholar
  26. 26.
    Corkill, J.M., Goodman, J.F., and Harrold, S.P. (1964) Thermodynamics of micellization of non-ionic detergents,Trans. Faraday. Soc. 64, 202–207.CrossRefGoogle Scholar
  27. 27.
    Price, C. Kendall, K.D. Stubbersfield, R.B. and Wright, B. (1983) Thermodynamics of micellization of polystyrene-b-poly (ethylene/propylene) block copolymer in n-decane,Polym. Commun.24, 326–328.Google Scholar
  28. 28.
    Price, C. Booth, C. Canham, P.A. Naylor, T.V. and Stubbersfield, R.B. (1984) The thermodynamics of micelle formation by a polystyrene-b-polyisoprene Block copolymer in N’-dimethylacetamide,Br. Polym. J. 21, 311–313.CrossRefGoogle Scholar
  29. 29.
    Price, C., Chan, E.K.M., Mobbs, R.H., and Stubbersfield, R.B. (1985) Thermodynamic investigation of micelle formation by a polystyrene-b-polyisoprene block copolymer in n-hexadecane, Eur. Polym. J. 21, 355–360.CrossRefGoogle Scholar
  30. 30.
    Price, C., Chan, E.K.M., and Stubbersfield, R.B. (1987) The effect of block length on the thermodynamic stability of micelles formed by polystyrene-b-polyisoprene copolymers in n-hexadecane Eur. Polym. J. 23, 649–651.CrossRefGoogle Scholar
  31. 31.
    Price, C. (1983) Micelle formation by block copolymers in organic solvents,Pure17Appl. Chem. 55, 1563–1572.CrossRefGoogle Scholar
  32. 32.
    Price, C., Chan, E.K.M., Pilcher, G., and Stubbersfield, R.B. (1985) A calorimetric study of the enthalpy of micelle formation by a polystyrene-b-polyisoprene block copolymer in n-hexadecane, Eur. Polym. J. 21, 627–628.CrossRefGoogle Scholar
  33. 33.
    Procházka, K., Dalcros, H., and Delmas, G. (1988) A light scattering and calorimetric study of micelle formation by a polystyrene-b-hydrogenated polyisoprene block copolymer in a binary solvent (pentane/cyclopentane)Can. J. Chem. 66, 915–918.CrossRefGoogle Scholar
  34. 34.
    Pleštil, J., Hlavatá, D. Hrouz, J., and Tuzar, Z. (1990) Dilute and semidilute solutions of ABA block copolymer in solvents for A or B blocks: 1. Small-angle X-ray scattering study,Polymer31, 2112–2117.CrossRefGoogle Scholar
  35. 35.
    Tuzar, Z., Koňák, C.,Stěáně , P., Pleštil, J., Kratochvil, P., and Procházka, K. (1990) Dilute and semidilute solutions of ABA block copolymer in solvents for A or B blocks: 2. Light scattering and sedimentation studyPolymer31, 2118–2124.CrossRefGoogle Scholar
  36. 36.
    Watanabe, H. and Kotaka, T. (1984) Rheology and structure of styrene-butadiene diblock copolymers dissolved in selective solvents,Polym. Eng. Rev.4, 73–122.CrossRefGoogle Scholar
  37. 37.
    Kotaka, T., Tanaka, T., and Inagaki, H. (1972)Thermodynamic and conformational properties of styrene-methyl methacrylate block copolymers in dilute solution. IV. Behavior of diblock and triblock copolymers in selective solvents,Polymer J3, 327–337.CrossRefGoogle Scholar
  38. 38.
    Tanaka, T., Kotaka, T., and Inagaki, H. (1972) Thermodynamic and conformational properties of styrene-methyl methacrylate block copolymers in dilute solution. V. Light scattering analysis of conformational anomalies in p-xylene solution,Polymer J3, 338–349.CrossRefGoogle Scholar
  39. 39.
    Kotaka, T., Tanaka, T., Hattori, M., and Inagaki, H. (1978) Block copolymer micelles in dilute solution,Macromolecules11, 138–145.CrossRefGoogle Scholar
  40. 40.
    ten Brinke, G. and Hadziioannou, G. (1987) Topological constraints and their influence on the properties of synthetic macromolecular systems. 2. Micelle formation of triblock copolymers,Macromolecules 20, 486–489.CrossRefGoogle Scholar
  41. 41.
    Balsara, N.P., Tirrell, M, and Lodge, T.P. (1991) Micelle formation of BAB triblock copolymers in sovents that preferentially dissolve the A block,Macromolecules 24, 1975–1986.CrossRefGoogle Scholar
  42. 42.
    Chu, B. (1995) Structure and dynamics of block copolymer colloids,Langmuir 11, 414–421.CrossRefGoogle Scholar
  43. 43.
    Ceresa, R.J. (1969) Effect of sequential arrangements on block copolymer properties,J. Polym. Sci., Polym. Symp.(C)26, 201–206.Google Scholar
  44. 44.
    Rodrigues, K. and Mattice, W.L. (1992) Intraparticle distribution functions for a micelle formed by a small symmetric triblock copolymer in a poor solvent for the terminal blocks,Langmuir8, 456–460.CrossRefGoogle Scholar
  45. 45.
    Semenov, A.N., Joanny, J.-F., and Khokhlov, A.R. (1995)Associating polymers: Equilibrium and linear viscoelasticity,Macromolecules28, 1066–1075.CrossRefGoogle Scholar
  46. 46.
    Nguyen-Misra, M. and Mattice, W.L.,Micellization and gelation of symmetric triblock copolymers with insoluble end blocks,Macromolecules 28, 1444–1457.CrossRefGoogle Scholar
  47. 47.
    Koňák.C., Tuzar, Z., Stěáně, P., SedláČek, B., and Kratochvíl, P. (1985) Interaction between block copolymer micelles in solutions,Progress in Colloid and Polym. Sci.71, 15–19.CrossRefGoogle Scholar
  48. 48.
    Kops-Werkhoven, M.M. and Fijnaut, H.M. (1981) Dynamic light scattering and sedimentation experiments on silica dispersions at finite concentrations,J. Chem. Phys. 74 1618–1625.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 1996

Authors and Affiliations

  • Z. Tuzar
    • 1
  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations