Triticale Genomic and Chromosomes’ History

  • Nicolas Jouve
  • Consuelo Soler
Part of the Developments in Plant Breeding book series (DIPB, volume 5)

Abstract

The present report reviews the classical subjects in the history of triticale, that have been condensed and centered from the cytogeneticist’s view point. It was early demonstrated that in respect to practical breeding, chromosome stability and fertility, hexaploids represent the optimal ploidic level. From the beginning, the cytogeneticist paid attention to the question of chromosome instability and meiotic irregularities in triticale. Several theories attributed the occurrence of univalents to different factors. Those that have deserved the most attention among researchers and breeders are reviewed: genetic wheat-rye interactions, time of duration of meiosis, and presence of telomeric heterochromatin in the rye chromosomes. The main cytogenetic strategies to broaden the germplasm are reviewed: obtention of triticales with different cytoplasms, secondary triticales following hybridization programs, tetraploid forms, wide crossing; new forms with variability produced by somaclonal or androgenic variation through in vitro culture.

Keywords

Chromosome Constitution Chromosome Substitution Triticale Breeding Meiotic Pairing Homoeologous Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cauderon Y. Alloploidy. In Interspecific Hybridization in Plant Breeding Sanchez-Monge, E, and Garcia-Olmedo, F, eds..Proc of the 8th Congress of Eucarpia, Madrid, Spain 1978.Google Scholar
  2. 2.
    Clausen RE, Goodspeed TH. Interspecific hybridization in Nicotiana. II. A tetraploid glutinosatabacumhybrid. Genetics 1925; 10: 278–84.PubMedGoogle Scholar
  3. 3.
    Karpechenko GD. Polyploid hybrid of Raphanus sativusL. and Brassica oleracea L. BullAppl Bot Genet Pl Breed 1927; 17: 398–410.Google Scholar
  4. 4.
    Blakeslee A. De’doublement du nombre de chromosomes chez les plantes par traitement dirilr. CR Acad Sci Paris 205 1937: 476–79.Google Scholar
  5. 5.
    Eigsti O. A cytogenetical study of colchicine effects in the induction of polyploidy in plants. Ax Nat Acad Sci 1938; 24: 56–63.Google Scholar
  6. 6.
    Lindschau M, Oehler E. Untersuchungen am konstant intermediaren additiven Rimpauschen Weizen-Roggen-Bastarden. Der Zuchter 1935; 7: 228–33.Google Scholar
  7. 7.
    Müntzing A. Über die Entstehungsweise 56-chromosomiger Weizen-Roggen Bastarde. Züchter 1936; 8: 188–91Google Scholar
  8. 8.
    Gupta PK, Reddy VBK. Cytogenetics of Triticale -A man made cereal. In “Chromosome Engineering in Plants: genetics, breeding, evolution” PK Gupta and T Tsuchiya, eds. Elsevier, Part A 1991: 335–59.Google Scholar
  9. 9.
    Wilson AS. Wheat and rye hybrids. Edinburgh Bat Sac Trans 1876; 12: 286–88.Google Scholar
  10. 10.
    Rimpau W. Keuzungsprodukte landwirthschaftlicher Kulturpflanzen Lanw Jbüch 1891; 20: 335–71.Google Scholar
  11. 11.
    Meister GK. Natural hybridization of wheat and rye in Russia. J Hered 1921; 12: 467–70.Google Scholar
  12. 12.
    Müntzing A. Studies on the properties and the ways of production of rye-wheat amphidiploids. Hereditas 1939; 25: 387–430.Google Scholar
  13. 13.
    Müntzing A. Experiences from work with induced polyploidy in cereals. Svalöf 1886–1946. In “History and Present Problems” Akerman et al, eds. Lund 1948:324–37.Google Scholar
  14. 14.
    Müntzing A Cytogenetic studies in rye-wheat Triticale. Proc 1st Int Wheat Genet Symp Tokyo. Cytologia supp 1957: 51–56.Google Scholar
  15. 15.
    Müntzing A Some recent results from breeding work with rye-wheat. In “Recent Plant Breeding Research” Akerberg A, and Hayberg A, eds. Svalof 1946–1961, 1963.Google Scholar
  16. 16.
    Müntzing A. Cytogenetic and breeding studies in Triticale. Proc 2nd Int Wheat Genet Symp Lund. Hereditas supp 1966; 2: 291–300.Google Scholar
  17. 17.
    Müntzing A Experiences from work with octoploid and hexaploid rye-wheat Triticale. Biol Zentralbl 1972; 91: 69–80.Google Scholar
  18. Müntzing A. Some results from cytogenetic studies and breeding work in triticale. Proc on the Eucarpia Section Cereals Symp on Triticale Leningrad 1975: 70–73.Google Scholar
  19. 19.
    Pissarev V. Diferent approaches in Triticale breeding. Proc 2nd Int Wheat Genet Symp Lund. Hereditas supp 1966; 2: 279–90.Google Scholar
  20. 20.
    Krolow KD. Aneuploidie und Fertilität bei amphidiploiden Weizen-Roggen- Bastarden Triticale. I. Aneuploidie und Selektion auf Fertilität bei oktoploiden Triticale-Formen Z Pflanzenztichtg 1962; 48: 177–96.Google Scholar
  21. 21.
    Krolow KD. Aneuploidie und Fertilität bei amphidiploiden Weizen-Roggen- Bastarden Triticale. II.Aneuploidie und Fertilitätsuntersuchungen an einer oktoploiden Triticale-Form mit starker Abregulierungstendenz. Z Pflanzenztichtg 1963; 49: 240–42Google Scholar
  22. 22.
    Krolow KD. Cytologische untersuchungen an kreuzungen zwischen 8x und 6x Triticale. I. Untersuchungen an den Eltern, an der F, und der F2. Z Pflanzenzüchtg 1969; 62: 241–71.Google Scholar
  23. 23.
    Pieritz WJ. Untersuchungen über de ursachen der Abeuploidie bei amphidiploiden weizen-itgg3r bastarden und über die funktionsfähigkeit ihrer männlichen und weiblichen gameten. Z Pflanzenzüchtg 1966; 56: 27–69.Google Scholar
  24. 24.
    Weimarck A. Cytogenetic behaviour in octoploid Triticale. I. Meiosis, aneuploiDy and fertility. Hereditas 1973; 74: 103–18.Google Scholar
  25. 25.
    Weimarck A. Kernel size and frequency of euploids in octoploid Triticale. Hereditas 1975; 80: 69–72.Google Scholar
  26. 26.
    Weimarck A. Cytogenetic behaviour in octoploid Triticale. II. Meiosis with special reference to chiasma frequency and fertility in F, and parents. Hereditas 1975; 80: 121–30.Google Scholar
  27. 27.
    O’Mara JG. Fertility in allopolyploid. Rec Genet Sci Am 1948; 17: 52.Google Scholar
  28. 28.
    O’Mara JG. The cytogenetics of Triticale. Bot Rev 1953; 19: 587–605.Google Scholar
  29. 29.
    Sanchez-Monge E. Studies on 42-chromosome Triticale. I. The production of the amphiploids. Ann Est Exp Aula Dei 1956; 4: 191–207.Google Scholar
  30. 30.
    Sanchez-Monge E. Crossability of tetraploid wheat species with cultivated rye. Wheat Inf Ser v 1956; 3: 30.Google Scholar
  31. 31.
    Sanchez-Monge E. Fertility in triticale. Wheat Inf Sery 1956; 3: 29.Google Scholar
  32. 32.
    Sanchez-Monge E. Hexaploid triticale. Proc 1st Int Wheat Genet Symp Manitoba 1958: 181–94Google Scholar
  33. 33.
    Sanchez-Monge E. Improvement of endosperm quality in Triticale. Proc 3rd Int Wheat Genet ii 1968: 371–72.Google Scholar
  34. 34.
    Sanchez-Monge E. La saga del Cachirulo. Ann Est Exp Aula Dei 1969; 10: 795–99.Google Scholar
  35. 35.
    Sanchez-Monge E. Hexaploid triticale with different cytoplasms. Ann INIA. Ser Prod Veg 1973; 3: 37–43.Google Scholar
  36. 36.
    Sanchez-Monge E. Development of triticales in western Europe. Proc Symp Triticale El Batan, México 1974: 31–39.Google Scholar
  37. 37.
    Sanchez-Monge E, Tjio JH. Note on 42 chromosome Triticale. Caryologia supp. 1954;2:748.11.Meister GK. Natural hybridization of wheat and rye in Russia. J Hered 1921; 12: 467–70.Google Scholar
  38. 38.
    Kiss A, Redei G. Kisèrletek buza-rozs hibridek triticale eloallitasara. Növénytermeles 1952; 1.Google Scholar
  39. 39.
    Kiss A. A hexaploid triticale nemesitési problémai. MTA Agrartudomanyi Közlemények 1971; 30: 187–96.Google Scholar
  40. 40.
    Nakajima G. Genetical and cytological studies in breeding of amphiploid types between Triticumand Secale. I, The external characters and chromosomes of the fertile F, T. turgidumn=14 x S. cerealen=7 and its FZ progenies. Jap J Genet 1958; 25: 139–48.Google Scholar
  41. 41.
    Larter EN. Triticale. Agric Inst Can Rev 1968; 23: 12–15.Google Scholar
  42. 42.
    Larter EN, Tsuchiya T, Evans LE. Breeding and cytology of Triticale. Proc 3rd Int Wheat Gut Symp Canberra 1968; 213–21.Google Scholar
  43. 43.
    Larter EN, Shedeski LH, McGninnis RC, Evans LE, Kaltsikes PJ. Rosner. A hexaploid triticale cultivar. Can J Plant Sci 1970; 50: 122–24.Google Scholar
  44. 44.
    Jenkins BC. History of the development of some presently promising hexaploid triticales. Wheat Inf Sery 1969; 28: 18–20Google Scholar
  45. 45.
    Jenkins BC. Hexaploid triticale: Past, present and future. Proc Int Symp on Triticale Leningrado, 1975: 26–29.Google Scholar
  46. 46.
    Shebeski LH. Triticale in retrospect and prospect. Hodowla Rosl Aklim Nasienn 1980; 24: 279–85.Google Scholar
  47. 47.
    Kiss A. Neue richtung in der Triticale-züchtung. Z Pflanzenzüchtg 1966; 55: 309–29.Google Scholar
  48. 48.
    Kiss A. Kreuzungsversuche mit Triticale. Der Zuchter 1966; 36: 249–55.Google Scholar
  49. 49.
    Kiss A, Videki L. Development of secondary hexaploid triticales by crossing Triticale with rye. Wheat Inf Ser 1971; 32: 17–20.Google Scholar
  50. 50.
    Pissarev V, Zhilkina MD. Triticale x 2n=42. Genetika 1967;4:3–12.Google Scholar
  51. 51a.
    Zillinsky FJ, Borlaug NE. Progress in developing Triticale as an economic crop. CIMMYT Res Bull 1971;17:27.52.Google Scholar
  52. b.
    Guedes-Pinto H, Carnide O, Canticle VP. New primary 8x-Triticales for Portugal. Broteria Genet 1984;V LXXX:136–46.Google Scholar
  53. 52.
    Guedes-Pinto H, Carnide O, Carnide VP. New primary 8x-Triticales for Portugal. Broteria Girt 1984;V LXXX:136–46.Google Scholar
  54. 53.
    Guedes-Pinto H, Carnide O, Leal F. Segmentation effect on immature spike on triticale calli. In “Plant Aging: Basic and Applied Approaches” R. Rodriguez et al, eds Plenum Press, New York 1990: 361–65.Google Scholar
  55. 54.
    Carnide O, Guedes-Pinto H. Forage apitude of primary 8x-Triticale compared with rye and whit progenitors. Porc 2nd Int Triticale Symp Passo Fundo, Brazil 1990: 536–41.Google Scholar
  56. 55.
    Bao WK. Evaluation of primary strains in breeding work of octoploid triticale. Eucarpia meug on Triticale Clermont Ferrand, France:1984.Google Scholar
  57. 56.
    Mûntzing A Mode of production and properties of a Triticale-Strain with 70 chromosomes. Inf Sery 1955; 2: 1–12.Google Scholar
  58. 57.
    Tsuchiya T. Cytogenetics in hexaploid Triticale. Wheat Newsletter 1969; 15: 10–17.Google Scholar
  59. 58.
    Briggle LW. Triticale -a review. Crop Sci 1969; 9: 197–02.Google Scholar
  60. 59.
    Scoles GJ, Kaltsikes PJ. The cytology and cytogenetics of Triticale. Z. Pflanzenzüchtg 1974; 73: 13–43.Google Scholar
  61. 60.
    Müntzing A. Triticale, results and problems. Verlag Paul Parey. Berlin 1979.Google Scholar
  62. 61.
    Kaltsikes PJ. Univalency in Triticale. In “Triticale”. Proc of an International Symposium El Bfq Mexico 1974: 59–167Google Scholar
  63. 62.
    Gupta PK, Priyadarsham PM. Triticale: present status and future prospects. Adv Genet 1982; 21: 255–45.Google Scholar
  64. 63.
    Gustafson JP. Cytogenetics of Triticale. In “Cytogenetics of crop plants” MS Swaminathan, PK Gupta, U Sinha, eds.1982:228–50. Macmillan India Ltd.Google Scholar
  65. 64.
    Lukaszewski AJ, Gustafson JP. Cytogenetics of Triticale. Plant Breeding Reviews 1987; 3: 41–94.Google Scholar
  66. 65.
    Boyd WJR, Sisodia NS, Larter EN. A comparative study of the cytological and reproductive behaviour of wheat and triticale subjected to two temperature regimes. Euphytica 1970; 19: 470–497.Google Scholar
  67. 66.
    Thomas JB, Kaltsikes PJ. Genotypic and cytological influences Triticale. Can J Genet Cytol 1972; 4: 889–98.Google Scholar
  68. 67.
    Shkutina FM, Khvostova VV. Cytological investigation of the 42-chromosome wheat-rye amphidiploids. Theor Appl Genet 1971; 41: 109–19.Google Scholar
  69. 68.
    Riley R, Miller TE. Meiotic chromosome pairing in Triticale. Nature 1970; 227: 82–83.PubMedGoogle Scholar
  70. 69.
    Lelley T. Desynapsis as a possible source of univalents in Metaphase I of Triticale. Z Pflanzenzüchtg 73:249–58.Google Scholar
  71. 70.
    Jouve N, Soler C, Saiz G. Cytoplasmic influence on the meiosis of 6x-Triticale. Z Pflanzenzüchtg 1977; 78: 124–34.Google Scholar
  72. 71.
    Chen C, Qualset, CO, Stanford EH. Meiotic studies of secondary 42- chromosome triticales. Bot Bull Academia Sinica 1977; 18: 89–99.Google Scholar
  73. 72.
    Berg KH, Oehler E. Untersuchungen über die cytogenetik amphidiploider weizen-roggen- Barth. Züchter 1938; 10: 226–38.Google Scholar
  74. 73.
    Lelley T. Triticale breeding. A new approach. In “Genetics and Breeding of Triticale” Proc Eucarpia meeting Clermont Ferrand, France 1985: 135–144.Google Scholar
  75. 74.
    Rajora A, Sareen PK, Chowdhury JK. Cytological studies in Triticale hexaploide Lart., Triticum durumL., and Secale cerealeL. Z Pflanzenzüchtg 1979; 83: 127–132.Google Scholar
  76. 75.
    Pohler W, Kistner G, Kison HU, Szigat G. Meioseuntersuchungen an Triticale. V. Meioseverhalten, pollenvitalität und fertilitat von triticale-F’-bastarden und deren eltern. Biol a 1978; 97: 453–70.Google Scholar
  77. 76.
    Lelley T, Larter EN. Meiotic regulation in triticale. Interaction of the rye genotype and specific wheat chromosomes on meiotic pairing in the hybrids. Can J Genet Cytol 1980; 22: 1–6.Google Scholar
  78. 77.
    Denier G. The influence of the wheat and rye genome on the performance of primary triticale. In “Genetics and Breeding of Triticale”. Proc Eucarpia meeting Clermont Ferrand, France 1985: 125–34.Google Scholar
  79. 78.
    Guedes-Pinto H, Rangel-Figueriedo T, Carnide O. Aneuploidy in high yielding 6x triticale. GutRes Comm 1984; 12: 229–35.Google Scholar
  80. 79.
    Jung C, Lelley T, Robbelen G. Genetic interactions between wheat and rye genome in triticale. 1. Cytological results. Theor Appl Genet 1985; 70: 422–26.Google Scholar
  81. 80.
    Charmet G, Bernard S, Bernard M. Origin of anuploid plants obtained by anther culture in triticale. Can J Genet Cytol 1986; 28: 444–52.Google Scholar
  82. 81.
    Lacadena JR. Introduction of alien variation into wheat by gene recombination. I. Crosses tusun mono-V 5B Triticum aestivumL. and Secale cerealeL and Aegilops columnarisZhuk. Euphytica 1967; 16: 221–30.Google Scholar
  83. 82.
    Naranjo T. Analisis del comportamiento mei6tico en diversas combinaciones trigo-centeno. Ph D Thesis Univ Complutense of Madrid. Spain 1978.Google Scholar
  84. 83.
    Naranjo T, Palla O. Genetic control of meiotic pairing in rye Secale-cereale. Heredity 1982;48:57–62.Google Scholar
  85. 84.
    Jung C, Lelley. Cytological and morphological expression of interactions between wheat and rye genomes in triticale. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 145–52.Google Scholar
  86. 85.
    Jung C, Lelley T. Genetic interactions between wheat and rye genomes in triticale. 2. Morphological,and yield characters. Theor Appl Genet 1985; 70: 427–32.Google Scholar
  87. 86.
    Fominaya A, Orellana J Does differential C-heterochromatin content affect chromosome pairing in octoploid triticale? Heredity 1988; 61: 167–73.Google Scholar
  88. 87.
    Galindo C, Jouve N. C-banding in meiosis. An approach to the study of genome interactions in Triticale. Genome 1989; 32: 1074–78.Google Scholar
  89. 88.
    Bennett MD, Chapman V. Riley R. The duration of meiosis in pollen mother cells of wheat, rye and triticale. Proc Roy Soc London B 1971; 178: 259–75.Google Scholar
  90. 89.
    Bennett MD, Kaltsikes PJ. The duration of meiosis in a diploid rye, a tetraploid wheat and the hexaploid Triticale derived from them Can J Genet Cytol 1973; 15: 671–79.Google Scholar
  91. 90.
    Roupakias DG, Kaltsikes PJ. Independence of duration of meiosis and chromosome pairing in hexaploid triticale. Can J Genet Cytol 1977; 19: 345–54.Google Scholar
  92. 91.
    Thomas JB, Kaltsikes PJ. The genomic origin of the unpaired chromosomes in triticale. Can J Genet Cytol 1976; 18: 687–700.Google Scholar
  93. 92.
    Merker A. Chromosome composition of hexaploid triticale. Hereditas 1975; 80: 41–52.Google Scholar
  94. 93.
    Merker A. The cytogenetic effect of heterochromatin in hexaploid triticale. Hereditas 1976; 83: 215–22.Google Scholar
  95. 94.
    Bennett MD. Heterochromatin, endosperm nuclei and grain shrivelling in wheat-rye genotypes. Heredity 1977; 39: 411–419.Google Scholar
  96. 95.
    Gustafson JP, Bennett MD. The effect of telomeric heterochromatin from Secale cerealeL on triticale xTriticosecaleWittmack I. The influence of several blocks of telomeric heterochromatin on early endosperm development and kernel characteristics at maturity. Can J Genet Cytol 1982; 24: 83–92.Google Scholar
  97. 96.
    Lukaszewski AJ, Apolinarska B, Gustafson JP, Krolow KD, Chromosome pairing and aneuploidy in tetraploid triticale. I. Stabilized karyotypes. Genome 1987; 29: 554–61.Google Scholar
  98. 97.
    Lukaszewski M, Apolinarska B, Gustafson JP, Krolow KD. Chromosome pairing and aneuploidy in tetraploid triticale. II. Unstabilized karyotypes. Genome 1987; 29: 562–69.Google Scholar
  99. 98.
    Ziauddin A, Kasha M. Giemsa C-band identification of rye chromosomes in some advanced lines of winter triticale. Can J Genet Cytol 1982; 24: 721–27.Google Scholar
  100. 99.
    Varghese JP, Lelley T, Origin of nuclear aberrations and seed shrivelling in triticale: a reevaluation of the role of C-heterochromatin. Theor Appl Genet 1983; 66: 159–67.Google Scholar
  101. 100.
    Gustafson JP, Lukaszewski M, Bennett MD. Somatic deletion and redistribution of telomeric heterochromatin in the genus Secaleand in Triticale. Chromosoma 1983; 88: 293–98.Google Scholar
  102. 101.
    Lukaszewski M. Mapping the D-genome from bread wheat for hexaploid triticale breeding. Proc Int Triticale Symp Sydney, Australia 1986: 53–62.Google Scholar
  103. 102.
    Giraldez R, Cermelio MC, Orellana J. Comparison of C-banding pattern in the chromosomes of inbred lines and open pollinated varieties of rye. Z. Pflanzenzüchtg 1979; 83: 40–48.Google Scholar
  104. 103.
    May CE, Appels R. Rye chromosome translocation in hexaploid wheat: a re-evaluation of loss of heterochromatin from rye chromosomes. Theor Appl Genet 1980; 56: 15–23.Google Scholar
  105. 104.
    Schlegel R, Metz G, Mettin D. Rye cytology, cytogenetics and genetics -current status. Theor Appl Genet 1986; 72: 721–34.Google Scholar
  106. 105.
    Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situlocalization of parental genomes in a wide hybrid. Ami Bot 1989; 64: 315–24.Google Scholar
  107. 106.
    Heslop-Harrison JS, Leitch, AR, Schwarzacher T. The physical organization of interphase nuclei. In The chromosome“ Heslop-Harrison JS, Flavell RB, eds. Oxford BIOS 1993: 178–82 and 221–32.Google Scholar
  108. 107.
    Cuadrado A, Jouve N. Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in xTriticosecale. Chromosome Res 1994; 2: 331–38.PubMedGoogle Scholar
  109. 108.
    Jouve N, Bernardo A, Garcia M, Garcia P, Soler C. C-banding and isozyme markers to analyze the segregation of rye chromosomes in the progenies of triticale x wheat hybrids. In “Genetic Manipulation in Plant Breeding” Horn et al., eds. Walter and Gruyter, Co. New York 1986: 163–65.Google Scholar
  110. 109.
    Bernardo A, Luengo P, Jouve N. Chromosome constitution in GZ and G3 progenies of 6x-triticale x T. turgidumL hybrids. Euphytica 37 1988: 157–66.Google Scholar
  111. 110.
    Roupakias DG, Kaltsikes PJ. The effect of telomeric heterochromatin on chromosome pairing of hexaploid triticale. Can J Genet Cytol 1977; 19: 543–48.Google Scholar
  112. 111.
    Schlegel R, Zaripoba Z, Shchapova AI. Further evidence on wheat-rye chromosome pairing in F, triticale x wheat hybrids. Biol Zentralbl 1980; 99: 585–90.Google Scholar
  113. 112.
    Naranjo T, Lacadena JR. C-banding pattern and meiotic pairing in five rye chromosomes of hexaploid triticale. Theor Appl Genet 1982; 61: 233–37.Google Scholar
  114. 113.
    Soler C, Montalvo D, Jouve N. Secondary association and univalent chromosomes in hybrids of hexaploid triticale and rye and wheat. J Hered 1980; 71: 408–10.Google Scholar
  115. 114.
    Kaltsikes PJ, Lukaszewski AJ, Gustafson JP. The effect of telomeric heterochromatin on chromosome pairing in several wheat-Secalehybrids. Proc 6th Int Wheat Genet Symp Kyoto Japan 1983: 885–88.Google Scholar
  116. 115.
    Miazga D, Chrzastekk M. The identification of rye univalents by means of Giemsa technique. Cer Res Comm 1984; 12: 107–109.Google Scholar
  117. 116.
    Schlegel R, Huelgenhof E. Heterochromatin alterations in chromosomes of hexaploid triticale and their effects on meiotic pairing behaviour. Proc Eucarpia meeting Clermont Ferrand, France 1985: 35–47.Google Scholar
  118. 117.
    Garcia P, Soler C, Jouve N. New germplasm for triticale breeding: cytogenetic studies in segregant progenies of the cross 6x-triticale x Triticum aestivumL. An Aula Dei 1988; 19: 169–78.Google Scholar
  119. 118.
    Bernardo A, Diaz F, Jouve N. Chromosome factors affecting pairing in progenies of 6x-triticale x Triticum turgidumL ssp turgidumcony. durumDesf.. Heredity 1988; 60: 455–61.Google Scholar
  120. 119.
    Bernardo A, Garcia M, Jouve N. The effect of Secale cerealeL. heterochromatin on wheat chromosome pairing. Genetica 77 1988: 89–95.Google Scholar
  121. 120.
    Kaltsikes PJ, Gustafson JP. Factors affecting chromosome pairing in Triticale. Proc Int Symp Genetic Approaches to Crop Impreovement, Karachi, Pkistan 1982: 234–35.Google Scholar
  122. 121.
    Soler C, Garcia P, Jouve N. Meiotic expression of modified chromosome constitution and structure in xTriticosecaleWittmack. Heredity 1990; 65: 21–28.Google Scholar
  123. 122.
    Badaeva ED, Badaev NS, Bolsheva, NL, Zelenin, AV. Chromosome alterations in the karyotype of triticale in comparison with the parental forms. i. Heterochromatin regions of R genome chromosomes. Theor Appl Genet 1986.;72:518–23.Google Scholar
  124. 123.
    Jouve N, Galindo C, Mesta M, Diaz F, Albella B, Garcia P, Soler C. Changes in triticale heterochromatin visualized by C-banding. Genome 1989; 32: 735–42.Google Scholar
  125. 124.
    Lukaszewski AJ, Gustafson JP. Translocaion and modification of chromosomes in triticale x wheat hybrids. Theor Appl Genet 1983; 64: 239–48.Google Scholar
  126. 125.
    Lapitan NL, Sears RS, Gill BS. Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet 1984; 68: 547–54.Google Scholar
  127. 126.
    Jordan MC, Larter EN. Somaclonal variation in triticale xTriticosecaleWittmack cv, Carman. Can J Genet Cytol 1985; 27: 151–57.Google Scholar
  128. 127.
    Bebeli PJ, Kaltsikes PJ. Somaclonal variation in agronomic traits of isogenic lines of Triticale. In CIMMYT Proc 2nd Int Triticale Symp México, CIMMYT: 1991.Google Scholar
  129. 128.
    Kaltsikes PJ, Bebeli PJ. The effect of rye telomeric heterochromatin on the nature and size of variance in regenerates families of hexaploid triticale. J Genet Breed 1992; 46: 359–62.Google Scholar
  130. 129.
    Kaltsikes PJ, Bebeli PJ. Somaclonal variation causes changes in the interrelationships between traits in hexaploid triticale. Japan J Breed 1993; 43: 45–51.Google Scholar
  131. 130.
    Gustafson JP, Lukaszewski M, Robertson K. Chromosome substitution and modifications in hexaploid triticale: a reevaluation Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 15–27.Google Scholar
  132. 131.
    Appels R., Gustafson JP, May CE, Structural variation in the heterochromatin of rye chromosomes in triticale. Theor Appl Genet 1982; 63: 235–44.Google Scholar
  133. 132.
    Heslop-Harrison JS. The molecular cytogenetics of plants Journal of Cell Sci 1991; 100: 15–21.Google Scholar
  134. 133.
    Giorgi B. A male-sterile mutant of dumm wheat. II. Induction of haploid plants in wheat and triticale. preliminary results. Cer Res Comm 1991; 19: 267–68.Google Scholar
  135. 134.
    Wolski T, Pojmaj MS, Sawicka EJ. Evaluation of short triticale mutants for hybrid breeding. Cer Res Comm 1991; 19: 261–66.Google Scholar
  136. 135.
    Sisodia NS, McGinnis RC. Importance of hexaploid wheat germplasm in hexaploid triticale breeding. Crop Sci 1970; 10: 161–62.Google Scholar
  137. 136.
    Larter EN, Hsam SLK. Performance of hexaploid triticale as influenced by source of cytoplasm. Proc 4th Int Wheat Genet Symp Columbia, MO, USA 1973: 245–51.Google Scholar
  138. 137.
    Hsam SLK, Larter EN. Influence of source of wheat cytoplasm on the synthesis and plant characteristics of hexaploid triticale. Can J Gen Cytol 1974; 16: 333–40.Google Scholar
  139. 138.
    Hsam SLK, Larter EN. Influence of source of wheat cytoplasm on the nature of proteins in hexaploid triticale. Can J Genet Cytol 1974; 16: 529–37.Google Scholar
  140. 139.
    Hsam SLK, Larter EN. Quantitative relationships of cellular-protein, RNA, and nuclear-histone in hexaploid triticale as influenced by source of wheat cytoplasm. Can J Genet Cytol 1974; 16: 619–25.Google Scholar
  141. 140.
    Kihara H. Substitution of nucleus and its effects on genome manifestation. Cytologia 1951; 16: 177–93.Google Scholar
  142. 141.
    Sanchez-Monge E. Hexaploid triticale with different cytoplasms. Proc Eucarpia Triticale Symposium Leningrado, USSR 1975: 175–180.Google Scholar
  143. 142.
    Sanchez-Monge E, Soler C. Wheat and Triticale with rye cytoplasm. Proc 4th Int Wheat Genet Symp Columbia, Missouri 1973: 387–90.Google Scholar
  144. 143.
    Kiss A, Trefas GS. The effect of cytoplasms in triticale breeding. Proc 4th Int Wheat Genet Symp Columbia, Missouri 1973: 233–36.Google Scholar
  145. 144.
    Lelley T. Genetic control of pairing of rye chromosomes in triticale. Z Pflanzenzüchtg 1975; 75: 24–29.Google Scholar
  146. 145.
    Jouve N, Soler C. Influence of the cytoplasms of Triticum timopheeviZhuk and Aegilops ovataL. in the meiosis of hexaploid triticale. Cer Res Comm 1978; 6: 235–240.Google Scholar
  147. 146.
    Jouve N, Montalvo D, Soler C. Cytogenetic analysis of 6x-triticale with different cytoplasms. Hodowla Rosl Aklim Nasienn 1980; 24: 323–26.Google Scholar
  148. 147.
    Soler C. Estudio comparativo de un alohexaploide artificial, Triticum x SecaleTriticale sobre los citoplasmas de las especies parentales. An INIA Ser Prod Veg 1975; 5: 9–82.Google Scholar
  149. 148.
    Nakajima G, Zennyozi A. Cytogenetics of wheat and rye hybrids. Seiken Ziho 1966; 18: 39–48.Google Scholar
  150. 149.
    Merker A. Chromosome substitutions, genetic recombination and the breeding of hexaploid triticale. Wheat Inf Sery 1976; 41–42: 44–48.Google Scholar
  151. 150.
    Gustafson JP, Zillinsky FJ. Identification of D-genome chromosomes from hexaploid wheat in a 42 chromosome triticale. 4th Int Wheat Genet Symp Columbia, MO, USA 1973: 225–31.Google Scholar
  152. 151.
    Wolski T, Tymienicka E. The present state and main problems in winter triticale breeding in Laski and Choryn Exp. Stations. Hod Rosl Aklim i Nas 1980; 24: 475–86.Google Scholar
  153. 152.
    Wolski T, Tymienicka E. Stan obecny i perspektwy ulepszenia ozimego Triticale Stacjach Poznanskiej Hodowli Roslin. Post Nauk Roln 1982; 5: 3–26.Google Scholar
  154. 153.
    Wolski T, Maczinska L, Tymienicka E. Winter triticale varieties from the Choryn and Laski Experimental Stations. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 487–96.Google Scholar
  155. 154.
    Tymieniecka E, Wolski T, Madra M. Breeding of winter triticale for improvement of agronomic value. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 445–54.Google Scholar
  156. 155.
    Merker A. A Giemsa technique for rapid identification of chromosomes in Triticale. Hereditas 1973; 75: 280–82.Google Scholar
  157. 156.
    Rogalska S. Chromosome constitution of plants of selected lines of secondary hexaploid triticale. Hodowla Rosl Aklim Nasienn 1978; 24: 357–64.Google Scholar
  158. 157.
    Pilch J. Rye chromosome constitution and the amount of telomeric heterochromatin of the widely and narrowly adapted CIMMYT hexaploid triticales. Z. Pflanzenzüchtg 1981; 87: 56–68.Google Scholar
  159. 158.
    Pilch J. Analysis of the rye chromosome constitution and the amount of telomeric heterochromatin in the widely and narrowly adapted hexaploid triticales. Theor Appl Genet 1981; 60: 145–49.Google Scholar
  160. 159.
    Lukaszewski AJ, Apolinarska B. The chromosome constitution of hexaploid winter triticale. Can J Genet Cytol 1981; 23: 281–85.Google Scholar
  161. 160.
    Seal A. C-banded chromosomes in wheat and triticale. Theor Appl Genet 1982; 63: 39–47.Google Scholar
  162. 161.
    Sandha GS, Grewal KD, Satija CK. Study of R-D chromosome substitutions and their effect in triticale. Crop Improv 1984; 11: 119–22.Google Scholar
  163. 162.
    Gupta PK, Balyan HS, Fedak G. A study of D/R substitutions in some spring triticales using wheat ditelocentrics. Proc 7th Int Wheat Genet Symp Cambridge, UK 1988: 297–301.Google Scholar
  164. 163.
    Ren Z, Lelley T, Robbelen G. Translocations of chromosomes in octoploid triticale x common wheat hybrids Acta Genet Sin 1991; 18: 228–34.Google Scholar
  165. 164.
    Plaha P, Sethi GS. Sdaptative advantage to 6R chromosome of rye in the genomic background of bread wheat. Cer Res Comm 1993; 21: 2–3.Google Scholar
  166. 165.
    Skovmand B, Fox PN, Villarreal PJ. Triticale in commercial agriculture: progress and promise. Adv Agric 1984; 37: 1–45.Google Scholar
  167. 166.
    Lukaszewski M. A comparison of physical distribution of recombination in chromosome IR in diploid rye and in hexaploid triticale. Theor Appl Genet 1992; 83: 1048–53.Google Scholar
  168. 167.
    Kaltsikes PJ, Lukaszewski AJ, Gustafson JP. Cross-over frequencies in chromosomes 1R and 2R of rye Secale cerealeL.. Proc Int Triticale Symp. The Australian Institute of Agricultural Sciences, Sydney 1991: 321–26.Google Scholar
  169. 168.
    Sanchez-Monge E, Sanchez-Monge E jr. Meiotic pairing in wheat-triticale hybrids. Z. Pflanzenzüchrg 1977; 79: 122–33.Google Scholar
  170. 169.
    Soler C, Montalvo D, Jouve N. Introduction de variation genética en trigo y triticale mediante hibridacibn de triticale con Triticum aestivumL. Anales INIA, Ser Agr 1982; 21: 95–108.Google Scholar
  171. 170.
    Jouve N, Montalvo D, Soler C. C-banding in cytogenetics of 6x-triticale x Triticum aestivum1 hybrids. Z Pflanzenzüchtg 1982; 88: 311–21.Google Scholar
  172. 171.
    Jouve N, Montalvo D, Soler C. Distribution of univalents in the meiosis and chromosomal analysis of the progeny of 6x triticale x common wheat hybrids. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 227–37.Google Scholar
  173. 172.
    Jouve N, Giorgi B. Analysis of induced homoeologous pairing in hybrids between triticale phlmutant and Triticum aestivumL. Can J Genet Cytol 1986; 28: 696–700.Google Scholar
  174. 173.
    Riley R, Chapman V. Haploids and polyhaploids inAegilopsand Triticum. Heredity 1957; 11: 195207.Google Scholar
  175. 174.
    Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 1958; 182: 713–15.Google Scholar
  176. 175.
    Sears ER. An induced utant with homoeologous pairing in common wheat. Can J Genet Cytol 1977; 19: 585–93.Google Scholar
  177. 176.
    Giorgi B. A homoeologous pairing mutant isolated in Triticum durumcv Cappelli. Mutat Breed News 1978; 11: 4–5.Google Scholar
  178. 177.
    Giorgi B. Origin, behaviour and utilization of a Phimutant of durum wheat, Triticum turgidumL. var durum. Proc 6th Int Wheat Genet Symp Kyoto, Japan 1983: 1033–40.Google Scholar
  179. 178.
    Giorgi B, Ceoloni C. A phlhexaploid triticale: production, cytogenetic behaviour and use for intergeneric gene transfer. Eucarpia meeting on Triticale Clermont Ferrand, France 1985; 105–117.Google Scholar
  180. 179.
    Chaudry MN. Synthesis of tetraploid triticale. Ph D Thesis Univ Complutense of Manitoba, Winnipeg, Canada 1968.Google Scholar
  181. 180.
    Krolow KD. 4x triticale production and use in triticale breeding. Proc 4th Iut Wheat Genet Symp Columbia, MO, USA 1973: 691–96.Google Scholar
  182. 181.
    Krolow KD. Research work with 4x-triticale in Germany Berlin. Proc Int Triticale Symp El Batan, Mexico 1974: 51–60.Google Scholar
  183. 182.
    Krolow KD. Selection of 4x triticale from the cross 6x-triticale x 2x rye. Proc Eucarpia Triticale Symposium Leningrado, USSR 1975: 114–122.Google Scholar
  184. 183.
    Krolow KD. New aspects for the use of 4x-triticale 2n=28 in triticale development. Proc 6th Int Wheat Genet Symp Kyoto, Japan 1983: 903–08.Google Scholar
  185. 184.
    Lapinski B, Apolinarska B. Polish work on 4x-triticale. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 261–66.Google Scholar
  186. 185.
    Bernard M, Bernard S, Saigne B, Tetraploid triticales: investigations on their genome and chromosome constitution. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 277–88.Google Scholar
  187. 186.
    Lehmann C, Hohmann U, Krolow KD. Tetraploid triticale with D-genome chromosomes from Triticum aestivumproduced with autoallohexaploid triticale. Cereal Res Comm 1991; 19: 469–76.Google Scholar
  188. 187.
    Badaev NS, Badaeva ED, Dubovets NI, Bolsheva, NL Bormotov VE,. Zelenin AV. Formation of a synthetic karyotype of tetraploid triticale. Genome 1992; 35: 311–17.Google Scholar
  189. 188.
    Hohmann U Stabilization of tetraploid triticale with chromosomes from Triticum aestivum ABDABDRR 2n = 28. Theor App Genet 1993;86:356–64Google Scholar
  190. 189.
    Baum M, Lelley T. A new method to produce 4x triticales and their application in studying the development of a new polyploid plant. Plant Breed 1988; 100: 260–67.Google Scholar
  191. 190.
    Lehmann C, Krolow K. Variability of morphological traits, fertility and yield-related characters of tetraploid triticale. Cer Res Comm 1993; 21: 75–81.Google Scholar
  192. 191.
    Martin A, Jouve N. Cytogenetics of F, and their progenies. In “Distant Hybridization of Crop Plants”. Kalloo G, Chowdhury, JB, eds. Monogr Theor Appl Genet 16. Springer V erlag. Berlin. 1992:82–105.Google Scholar
  193. 192.
    Bernard S, Gay G. Introduction of Aegilops ventricosagermplasm into hexaploid triticale. Eucarpia meeting on Triticale Clermont Rerrand, France 1985: 221–24.Google Scholar
  194. 193.
    Krolow KD, Lukaszewski AJ, Gustafson PJ. Preliminary results on the incorporation of D- and E-genome chromosomes into 4x-triticale. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 289–95.Google Scholar
  195. 194.
    Guedes-Pinto H, Mello-Sampayo T. Allo-autopolyploid triticales AABBRRRR: I. Origin, behaviour and propects. Eucarpia meeting on Triticale Clermont Ferrand, France 1985: 205–13.Google Scholar
  196. 195.
    Steward FC. Growth and development of cultivated cells. III. Interpretations of the growth from free cell to carrott plant. Amer J Bot 1958; 45: 709–13.Google Scholar
  197. 196.
    Reinert J. Morphogenese und ihre kontrolle an gewebekulturen aus carotten. Naturwissenshaten 1958; 45: 344–45.Google Scholar
  198. 197.
    Larkin PJ, Scowcroft WR. Somaclonal variation. A novel source of variability from cell cultures for plant improvement. Theor Appl Genet 1981; 60: 197–214.Google Scholar
  199. 198.
    Nakamura C, Keller WA. Plant tegeneration from inflorescence cultures of hexaploid triticale. Plant Sci Let 1982; 24: 275–80.Google Scholar
  200. 199.
    Kapila RK, Sethi GS. Genotype and age effect on in vitroembryo rescue of bread wheat x hexaploid triticale hybrids. Plant Cell Tiss Org Culture 1993; 35: 287–91.Google Scholar
  201. 200.
    Reddy VD, Reddy GM. Genetic basis of plant regeneration in hexaploid triticale. Euphytica 1993; 70: 17–19.Google Scholar
  202. 201.
    Sirkka A, Immonen T. Comparison of callus culture with embryo culture at different times of embryo rescue for primary triticale production. Euphytica 1993; 70: 185–90.Google Scholar
  203. 202.
    Stolarz A, Lörz H. Somatic embryogenesis in vitromanipulation and plant regeneration from immature embryos of hexaploid triticale x TriticosecaleWittmack. Z Pflanzenzüchtg 1986; 96: 35362.Google Scholar
  204. 203.
    Guedes-Pinto H, Carnide O. Plantlets regeneration from in vitro culture of 6x-triticale immature spikes. Ciencia Biologica 1987;supl 12 5A:208.Google Scholar
  205. 204.
    Guedes-Pinto H, Carnide O, Alpoim F. Calliinduction from triticale immature spikes. Vortr Pflanzenzüchtg heft 1989; 15–1: 7–14.Google Scholar
  206. 205.
    Bebeli PJ, Karp A, Kaltsikes PJ. Plant regeneration and somaclonal variation from cultured immature embryos of sister lines of rye and triticale differeing in their content of heterochromatin. 1. Morphogenetic response. Theor Appl Genet 1988; 75: 929–936.Google Scholar
  207. 206.
    Felföldi K, Purnhause L. Induction of regeneration callus cultures from immature embryos of 44 wheat and 3 triticale cultivars. Cer Res Comm 1992; 20: 273–77.Google Scholar
  208. 207.
    Armstrong KC, Nakamura C, Keller WA. Karyotype instability in tissue culture regenerants of triticale xtriticosecaleWittmack cv. Welsh from 6-month-old calluscultures. Z. Pflanzenzüchtg 1983; 91: 233–45.Google Scholar
  209. 208.
    Bebeli PJ, Kaltsikes PJ. The effect of rye telomeric heterochromatin on the nature and size of variance in regenerated families of hexaploid triticale. J Genet Breed 1992; 46: 359–62.Google Scholar
  210. 209.
    Bebeli PJ, Kaltsikes PJ. Somaclonal variation causes changes in the inter-relationships between traits in hexaploid triticale. Japan J Breed 1992; 43: 45–51.Google Scholar
  211. 210.
    Bebeli PJ, Kaltsikes PJ, Karp A. Field evaluation of somaclonal variation in rye lines differing in telomeric heterochromatin. J Genet Breed 1993; 47: 15–22.Google Scholar
  212. 211.
    Bernard S. In vitro androgenesis in hexaploid triticale: determination of physical conditions increasing embryod and green plant production. Z Plflanzenzüchtg 1988;85:308–321.Google Scholar
  213. 212.
    Bernard S. Direct embryogenesis and plant production through in vitroandrogenesis in triticale and wheat. Vortr Pflanzenzüchtg 1989; 15: 7–15.Google Scholar
  214. 213.
    Charmet G, Bernard S. Diallel analysis of androgenic plant production in hexaploid triticale xTriticosecaleWittmack. Theor Appl Genet 1984; 69: 55–61.Google Scholar
  215. 214.
    Gonzalez JM, Lopez LA, Bernard S, Jouve N. Prolamin analysis of progenies from androgenetic plants of triticale. Plant Breed 1993; 111: 42–48.Google Scholar
  216. 215.
    Jouve N, Bernardo A, Soler C. Hybrids 6x-triticale x Triticum turgidumL and the obtention of its F2 and BC, progenies. Cer Res Comm 1984; 12: 223–28.Google Scholar
  217. 216.
    Gupta PK, Fedak G. Variation in induction of homoeologous pairing among chromosomes of 6x Hordeum parodiias a result of three triticale xTriticosecaleWittmack cultivars. Can J Genet Cytol 1986; 28: 420–25.Google Scholar
  218. 217.
    Gupta PK, Priyadarshan PM, Misra AK. Cytogenetic studies in triticales: I. Cytology of F, and F2 hybrids involving rye. Proc 6th Int Wheat Genet Symp Kyoto Japan 1983: 909–13Google Scholar
  219. 218.
    Gupta PK, Priyadarsham PM. Analysis of meiosis in Triticale (xTriticosecaleWittmack) x rye (Secale cerealeL.) F, hybrids at three ploidy levels. Theor Appl Genet 1987; 73: 893–98.Google Scholar
  220. 219.
    Miller TE, Riley R. Meiotic chromosome pairing in wheat-rye combinations. Genet Iber 1972; 24: 241–50.Google Scholar
  221. 220.
    Bernard S, B. Saigne B. Etude cytogénétique de F1 et F2 (Triticale hexaploide xSeigle): Mise en évidence d’une inhibition du Systeme diploidisant du Blé tendre. Ann Amelior Plantes 1977; 27: 73–748.Google Scholar
  222. 221.
    Jouve N, Montalvo D. Meiotic behaviour in hybrids beteen 6x-triticale and Secale cerealeL. Proc 8th Congr Eucarpia Madrid, Spain 1977: 191–97.Google Scholar
  223. 222.
    Naranjo T, Lacadena JR, Giraldez R. Interaction between wheat and rye genomes on homologous and homoeologous pairing. Z Pflanzenzüchtg 1979; 82: 289–305.Google Scholar
  224. 223.
    Jouve N, Diez N, Rodriguez M. C-banding in 6x-triticale x Secale cerealehybrid cytogenetics. Theor Appl Genet 1988; 57: 75–79.Google Scholar
  225. 224.
    Fernandez-Escobar J, Martin A. Morphology, cytology and fertility of a trigeneric hybrid from triticale x tritordeum. Euphytica 1989; 42: 291–96Google Scholar
  226. 225.
    Fernandez JA, Jouve N. Meiotic pairing in hybrids of 6x-triticale and the amphiploid Hordeum chilense x Triticum turgidumcony durum. J Hered 1985; 76: 63–64.Google Scholar
  227. 226.
    Vos DJ. Introgresion of material from Agropyron elongatum(2n=14) into triticale. In “Sakamoto S (ed.). Proc 6th Int Wheat Geneti Symp, Jyoto, Japan 1983: 897–902.Google Scholar
  228. 227.
    Gupta PK, Fedak G. Intergeneric hybrids between xTriticosecalecv Welsh n=42, and three genotypes of Agropyron intermedium2n=42. Can J Genet Cytol 1986; 28: 176–79.Google Scholar
  229. 228.
    Gupta PK, Fedak G. Intergeneric hybrids between Hordeum jubatumand triticale (xTriticosecaleWittmack). Genome 1987; 29: 671–73.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Nicolas Jouve
    • 1
  • Consuelo Soler
    • 2
  1. 1.Department of Cell Biology and GeneticsUniversity of Alcalá de Henares CampusAlcalá de Henares (Madrid)Spain
  2. 2.Department of Plant Breeding, C.I.T., I.N.I.AAlcalá de Henares (Madrid)Spain

Personalised recommendations