Response Correlations of Linear Systems with White Noise Linearly Parametric Inputs

  • M. Di Paola
  • G. Falsone
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 47)


Relationships between moments and correlations of the response of linear systems subjected to linearly parametric normal white noise inputs are here reported. They are obtained by extensively using the properties of the stochastic integral calculus.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lin, Y.K. (1967) Probabilistic Theory of Structural Dynamic, McGraw-Hill New York.Google Scholar
  2. 2.
    Stratonovich, R.L. (1963) Topics in the Theory of Random Noise, Gordon and Breach, New York.Google Scholar
  3. 3.
    Di Paola, M. and Falsone, G. (1993) Stochastic Dynamics of Nonlinear Systems Driven by Non-Normal Delta-Correlated Processes. J.Appl.Mech., ASME 60 141–148.zbMATHCrossRefGoogle Scholar
  4. 4.
    Muller, P.C. and Schielen, W.O. (1985) Linear Vibrations, Martinus Nijhoff Publ. Dordrecht.Google Scholar
  5. 5.
    Falsone, G. (1994) Cumulants and Correlations for Linear Systems under Non-Stationary Delta-Correlated Processes. Prob.Engng.Mech., 9, 157–165.CrossRefGoogle Scholar
  6. 6.
    Itô, K. (1951) Stochastic Differential Equations. Mem.Am.Math.Soc., 4.Google Scholar
  7. 7.
    Di Paola, M. (in press) Quasi-Linear Oscillators under Poisson Pulses. Jorn. Appl. Mechs., ASME.Google Scholar
  8. 8.
    Benaroya, H. and Rehak, M. (1989) Response and Stability of a Random Differential Equation: Part I - Moment Equation Method. J. Appl Mechs., ASME, 56, 192–195.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hou, Z.K. and Iwan, W.D. (1991) Nonstationary Response of Linear Systems under Uncorrelated Parametric and External Excitations. Prob. Engng. Mechs, 6, 74–81.CrossRefGoogle Scholar
  10. 10.
    Gardiner, C.W. (1985) Handbook of Stochastic Methods. Springer-Verlag, Berlin.Google Scholar
  11. 11.
    Grigoriu, M. (1987) White Noise Processes. J. Engng. Mech. Div., ASCE, 119 757- 765.CrossRefGoogle Scholar
  12. 12.
    Wong, E. and Zakai, M. (1965) On the Relation between Ordinary and Stochastic Differential Calculus. Int. J. Engng. Sci., 3, 213–229.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Di Paola
    • 1
  • G. Falsone
    • 1
  1. 1.Dipartimento di Ingegneria Strutturale & GeotecnicaUniversità di PalermPalermoItaly

Personalised recommendations