Skip to main content

Time Resolved Photoluminescence From A Semiconductor Microcavity

Temperature dependence and role of leaky modes

  • Chapter
Microcavities and Photonic Bandgaps: Physics and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 324))

  • 461 Accesses

Abstract

Time resolved photoluminescence in semiconductor microcavities in the strong coupling regime both for non-resonant and resonant excitation is modeled by considering scattering of exciton polaritons by acoustic phonons. Rise time and decay time of the luminescence signal are studied as a function of temperature. The polariton bottleneck effect is put into evidence in model structures which are free of leaky modes. In realistic strucures these modes are instead expected to play a dominant role in the relaxation of non-resonant photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. See e.g. Confined Electrons and Photons: new Physics and Devices i edited by E. Burstein and C. Weisbuch (Plenum, 1994).

    Google Scholar 

  2. Yokoyama, H. et al. (1990), Enhanced Sonpaneous Emission from GaAs Quantum Wells in monolithic microcavities, Appi. Phys. Lett.57, pp. 2814 - 2816.

    Article  ADS  Google Scholar 

  3. Weisbuch, C. et al. (1992), Observation of the coupled exciton photon mode splitting in a semiconductor microcavity, Phys. Rev. Lett. 69, pp. 3314-3317;

    Article  ADS  Google Scholar 

  4. T. A. Fisher et al., (1995), Electric Field and Temperature tuning of exciton photon coupling in quantum microcavity structures, Phys. Rev. B 51, pp. 2600;

    Article  ADS  Google Scholar 

  5. Houdré, R. et al., (1994), Measurement of cavity polariton dispersion curve from anglew resolved photlumi- nescence experiments, Phys. Rev. Lett.73, pp. 2043 - 2046.

    Article  ADS  Google Scholar 

  6. see Abram, I. in this volume; see also Hegarty, J. ibid.

    Google Scholar 

  7. McLeod, H. A. Thin-Film Optical Filters, second ed. (Hilger, 1986 ).

    Chapter  Google Scholar 

  8. Andreani, L. C., Ph. D. Thesis, Scuola Normale Superiore, Pisa 1989, unpublished.

    Google Scholar 

  9. Savona, V. and Tassone, F., (1995), Exact quantum calculation of polariton dispersion in semiconductor microcavities, Solid State Comm. 95, pp. 673 - 678

    Article  ADS  Google Scholar 

  10. Wolfe, C. M. et al., (1970), Electron Mobilty in High Purity GaAs, Journ. Appi Phys. 41, pp. 3088-3091;

    Article  ADS  Google Scholar 

  11. Lee, S. et al., (1985), Theoretical investigation of the Passive Dependences of Energy Gaps in Semiconductors, Phys. Rev. B32, pp. 1152 - 1155.

    Article  ADS  Google Scholar 

  12. Piermarocchi, C. et al., (1995), Effect of the scattering by phonons on the temperature dependence of the free QW exciton radiative lifetimes, in “Optics of Confined Excitons and Reduced Dimensional Systems”, Cortona, Italy, to be published in Nuovo Ctm. D.

    Google Scholar 

  13. Toyozawa, Y. (1959), On the dynamical behavior of an exciton,Progr. Theor. Phys. Suppl 12, pp. 111-139;

    Article  ADS  Google Scholar 

  14. Sumi, H., (1975), On the exciton luminescence at low temperatures: importance of the polariton viewpoint, J. Phys, Soc. Jpn. 21, pp. 1936-1945;

    Google Scholar 

  15. Weisbuch, C. and Ulbrich, R. (1979) Spatial and spectral features of polariton fluorescence, J. Lum n 18/19, pp. 27-29;

    Article  ADS  Google Scholar 

  16. Rappel, W. J. et al., (1988), Exciton-polariton picture of the free-exciton lifetime in GaAs,, Phys. Rev. B38, pp. 7874 - 7876.

    Article  ADS  Google Scholar 

  17. Feldmann, J. et al., (1987), Linewidth Dependence of Radiative Exciton Lifetimes in Quantum Wells, Phys. Rev. Lett. 59, pp. 2337-2340;

    Article  ADS  Google Scholar 

  18. Martinez-Pastor, J. et al., (1993), Temperature Dependence of Exciton Lifetimes in GaAs/AlGaAs Single Quantum Wells, Phys. Rev. B 47, pp. 10456-10460;

    Article  ADS  Google Scholar 

  19. Damen, T. C. et al., (1990), Dynamics of Exciton Formation and Relaxation in GaAs Quantum Wells, Phys. Rev. B42, pp. 7434 - 7438.

    Article  ADS  Google Scholar 

  20. Andreani, L. C. et al., (1991), Free Exciton Radiative Lifetimes in Quantum Wells, Solid State Commun. 77, pp. 641 - 644.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A., Schwendimann, P. (1996). Time Resolved Photoluminescence From A Semiconductor Microcavity. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics