Advertisement

Dynamical Chaos For The Strongly Coupled Microcayity-Quantum Well-Exciton System

  • S. V. Prants
  • L. E. Kon’kov
Chapter
Part of the NATO ASI Series book series (NSSE, volume 324)

Abstract

It is numerically observed the transition from order to quantum dynamical chaos for the exciton-photon system in the strong-coupling regime. The conditions for such a transition can be reached for the real excitonic-semiconductor microcavity structure.

Keywords

Maximal Lyapunov Exponent Exciton Transition Quantum Chaos Dynamical Chaos Excited Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jaynes, E.T., and Cummings, F.W. (1963) Comparison of quantum and semi-classicalradiation theories with application to beam laser, Proc. IEEE 51, 89–119.CrossRefGoogle Scholar
  2. [2]
    (1994) P.R.Berman(ed.), Cavity Quantum Electrodynamics, Academic press, Boston.Google Scholar
  3. [3]
    Hopfield, J.J.(1958) Theory of the contribution of excitons to the complex dielectric constant of crystals, Phys. Rev. 112, 1555.ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    (1995) E.Burstein and C.Weisbuch (eds.), Confined Electrons and Photons, Plenum Press, New York.Google Scholar
  5. [5]
    Belobrov, P.I., Zaslavskii, G.M., and Tartakovskii, G.Kh. (1976) Stochastic destruction of bound states in a system of atoms interacting with a radiation field, Zh. Eksp. Theor. Fiz. 71, 1799–1812.Google Scholar
  6. [6]
    Kon’kov, L.E., and Prants, S.V. (in press) Quantum chaos in the group-theoretical picture, J. Math. Phys..Google Scholar
  7. [7]
    Prants, S.V., and Kon’kov, L.E. (in press) Map of dynamical chaos for the strongly coupled atom-field system, Izvestija of the Russian Academy of Sciences.Google Scholar
  8. [8]
    Norris T.B. (1995) Strong coupling in semiconductor microcavi ties in E.Burstein and C.Weisbuch (eds.), Confined Electrons and Photons, Plenum Press New York.Google Scholar
  9. [9]
    Weisbuch, C., Nishioka, M., Ishikawa, A. and Arakawa, Y. (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, 3314.ADSCrossRefGoogle Scholar
  10. [10]
    Yamamoto, Y., Machida, S., and Bjork, G. (1991) Microcavity semiconductor laser with enhanced spontaneous emission, Phys. Rev. B 44, 657.ADSCrossRefGoogle Scholar
  11. [11]
    Lichtenberg, A.J., and Lieberman, M.A.(1983) Regular and Stochastic Motion, Springer-Verlag, NewYork.zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • S. V. Prants
    • 1
  • L. E. Kon’kov
    • 1
  1. 1.PacificInstituteVladivostokRussia

Personalised recommendations