Localized Structures In Nonlinear Optical Systems And Materials

  • M. Brambilla
  • L. A. Lugiato
  • A. Pregnolato
  • L. Spinelli
  • M. Stefani
Part of the NATO ASI Series book series (NSSE, volume 324)


Diffractive effects in passive nonlinear optical resonators can lead to pattern forming bifurcations with subcritical character. When the pattern (in our case, a regular hexagonal lattice of intensity peaks) coexists with the homogeneous solution, localised structures can be excited, consisting in a single intensity peak in the transverse plane. This solution has the characteristics of a two-dimensional spatial soliton, and is highly degenerate with respect to the peak location. We investigate the procedures by which such peaks can be turned on by injecting narrow laser pulses, the conditions to ensure independence among the peaks and the way to erase a localised structure without affecting the others. These features suggest the possibility to encode optical information in the structure of the field profile.


Localize Structure Transverse Plane Saturable Absorber Field Profile Input Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. A. Lugiato, ed. Special issue on Nonlinear opticals siructuresj pattems, chaos. Chaos, Solitons and Fractals 4, vol. 8/9, 1994; see especially the introductory article to the issue, and references quoted therein.Google Scholar
  2. [2]
    H. Haken Synergetics, An Introduction Springer-Verlag, Berlin 1977.zbMATHGoogle Scholar
  3. [3]
    G. Nicolis and I. Prigogine Self-Organisation in Nonequilihrium Systems Wiley, New York 1977;Google Scholar
  4. G. Nicolis Introduction to Nonlinear Science Cambridge University Press, 1995.Google Scholar
  5. [4]
    C. P. Smith, Y. Dihardja, C. 0. Weiss, L. A. Lugiato, F. Prati and P. Vanotti, Opt. Commun. 102, 505 (1993).ADSCrossRefGoogle Scholar
  6. [5]
    F. Prati, M. Travagnin and L. A. Lugiato, Opt. Lett. 19, 1991 (1994).ADSCrossRefGoogle Scholar
  7. [6]
    Proceedings of the Royal Society Discussion Meeting on Nonlinear Optics for information processing and communications, Proc. R. Soc. Lond., in press; see articles by L. F. Mollenauer and N. J. Doran.Google Scholar
  8. [7]
    G. Khitrova, H. M. Gibbs, Y. Kawemura, H. Iwamura, T. Ikegami, J. E. Sipe and L. Ming, Phys. Rev. Lett. 70, 920 (1993).ADSCrossRefGoogle Scholar
  9. [8]
    P. V. Marnyshev et al., Elec. Lett. 30, 726 (1994).ADSCrossRefGoogle Scholar
  10. [9]
    D. W. McLaugMin, J. V. Moloney and A. C. NeweU, Phys. Rev. Lett. 51, 75 (1983).ADSCrossRefGoogle Scholar
  11. [10]
    N. N. Rozanov and G. V. Khodova, Opt. Spectrosc. 64, 449 (1988).ADSGoogle Scholar
  12. [11]
    G. S. McDonald and W. J. Firth, J. Opt. Soc. Am. B 7, 1328 (1990) and 10, 1081 (1992).ADSGoogle Scholar
  13. [12]
    M. TUdi, P. Mandel and R. Lefever, Phys. Rev. Lett. 73, 64 (1994).ADSCrossRefGoogle Scholar
  14. [13]
    M. Tlidi and P. Mandel Chaos, Soliiona and Fractals 4, 1475 (1994).ADSzbMATHCrossRefGoogle Scholar
  15. [14]
    A. J. Scroggie, G. S. McDonald, W. J. Firth, M. Tlidi, R. Lefever and L. A. Lugiato Chaos, Solitons and Fractals 4, 1323 (1994).ADSzbMATHCrossRefGoogle Scholar
  16. [15]
    L. A. Lugiato and C. Oldano, Phys. Rev. A 37, 3896 (1988).MathSciNetGoogle Scholar
  17. [16]
    W. J. Firth and A. J. Scroggie, Europhys. Lett. 26, 521 (1994).ADSCrossRefGoogle Scholar
  18. [17]
    R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976).ADSCrossRefGoogle Scholar
  19. [18]
    A. J. Scroggie, Ph. D. Thesis, University of Strathclyde, March 1995.Google Scholar
  20. [19]
    L. A. Lugiato, S. M. Barnett, M. Brambilla, A. Gatti, L Marzoli, G. L. Oppo, F. Prati, M. Stefani, M. Travagnin and H. Wiedemann, in Ref. 6.Google Scholar
  21. [20]
    W. J. Firth and A. J. Scroggie, preprint.Google Scholar
  22. [21]
    M. Brambilla, L. A. Lugiato, A. Pregnolato and L. Spinelli, in preparationGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Brambilla
    • 1
  • L. A. Lugiato
    • 1
  • A. Pregnolato
    • 1
  • L. Spinelli
    • 1
  • M. Stefani
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàMilanoItaly

Personalised recommendations