Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 324))

Abstract

Scientists have realized for many years that it is possible to alter the spontaneous emission properties of a light-matter system by changing the boundary conditions[l]. Due to improvements in growth techniques for semiconductor structures, added emphasis has been placed upon tailoring the spontaneous emission characteristics of semiconductor quantum well heterostructures by enclosing them in distributed Bragg reflector (DBR) microcavities [2-8]. High fmesse microcavities can enhance the ratio of spontaneous emission into the cavity’s lasing mode to the total spontaneous emission, thereby reducing lasing threshold when the cavity transmission wavelength matches the emitter’s wavelength. One interesting and important side-effect of such high Q cavities is that the intracavity photon lifetime can be made quite large, so that the material in the cavity may have the chance via dipole coupling to absorb and reemit radiation several times before energy irreversibly escapes from the system. If this is the case, one is said to be in the strong coupling regime, where the light-matter coupling rate, Ω is greater than both the inverse photon lifetime, κ, and the polarization dephasing rate of the absorbing medium, λ. Further, this coupling serves to lift the degeneracy in the energy eigenstates of the uncoupled system. If one then diagonalizes the 2x2 interaction matrix to find the coupled system’s eigenenergies and eigenstates, one finds two new states which are split symmetrically in energy from the original state by a fi:equency which is characteristic of the coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Purcell, E. (1946) Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. Sanchez-Mondragon, J. J., Narozhny, N. B., and Eberly, J. H. (1983) Phys. Rev. Lett. 51, 550.

    Article  ADS  Google Scholar 

  3. Agarwal, G. S., (1984) Phys. Rev. Lett. 53, 1732

    Article  ADS  Google Scholar 

  4. Haroche, S. (1992) Cavity (Quantum Electrodynamics, in Dalibard, J., Raimond, J. M. and Zinn-Justin, J., eds..Fundamental Systems in Quantum Optics(Elsevier Science, New York

    Google Scholar 

  5. Berman, P. R. (1994) ed.,Cavity Quantum Electrodynamics Academic Press, Boston.

    Google Scholar 

  6. Burstein, E. and Weisbuch, C., (1994) eds.,Confined Electrons and Photons: New Physics and Devices, Plenum, New York

    Google Scholar 

  7. Yokoyama, H. and Ujihara, K. (1995)Spontaneous Emission and Laser Oscillation in Microcavities, CRC Press, Boca Raton..

    Google Scholar 

  8. Citrin, D. S. (1994) IEEE J. Quantum Electron. 30, 997.

    Article  Google Scholar 

  9. Lin, C. C., Deppe, D. G., and Lei, C. (1994) IEEE J. Quantum Electron. 30, 2304.

    Article  Google Scholar 

  10. Grant, D. E., and Kimble, H. J. (1982) Opt. Lett. 7, 353.

    Article  ADS  Google Scholar 

  11. Carmichael, H. J., Brecha, R. J., Raizen, M. G, Kimble, H. J., and Rice, P. R. (1989) Phys. Rev. A 40, 5516.

    Article  ADS  Google Scholar 

  12. Rempe, G., Thompson, R. J., Brecha, R. J., Lee, W. D., and Kimble, H. J. (1991) Phys. Rev. Lett. 67, 1727.

    Article  ADS  Google Scholar 

  13. First semiconductor NMC: Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. (1992) Phys. Rev. Lett. 69, 3314.

    Article  ADS  Google Scholar 

  14. Zhu, Y, Gauthier, D. J., Morin, S. E., Wu, Q., Carmichael, H. J., and Mossberg, T. W. (1990) Phys. Rev. Lett. 64, 2499.

    Article  ADS  Google Scholar 

  15. Houdrt, R., Stanley, R. P., Oesterle, U., Ilegems, M., and Weisbuch, C. (1994) Phys. Rev. B 49, 16761.

    Article  Google Scholar 

  16. Savona, V., Andreani, L. C., Schwendimann, P., and Quattropani, A. (1995) Solid State Conunun. 93, 733.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nelson, T.R., Lindmark, E.K., Wick, D.V., Tai, K., Khitrova, G., Gibbs, H.M. (1996). Normal-Mode Coupling In Planar Semiconductor Microcavities. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics