Numerical method for calculating spontaneous emission rate near a surface using Green’s functions

  • F. Wijnands
  • J. B. Pendry
  • P. J. Roberts
  • P. M. Bell
  • L. Martín Moreno
  • F. J. Garcia-Vidal
Chapter
Part of the NATO ASI Series book series (NSSE, volume 324)

Abstract

We present a novel computational approach for calculating spontaneous emission in the presence of a surface of a material slab. The only requirement on the material is that it should have periodicity parallel to the surface. The spontaneous emission rate is calculated using Fermi’s golden rule, which can be described in terms of the classical Density of States (DOS). The DOS can in turn be expressed in terms of the Green’s function. We calculate the Green’s function for light of a specific frequency and a specific incident direction and distance with respect to the surface and then integrate over all incident directions. The only information required from the material, is the reflection coefficients for plane waves at the surface. With our method we reproduce results of an analytical calculation for a semi-infinite homogeneous dielectric. We also present new results for a slab of cylindrical dielectric rods embedded in air on a square lattice.

Keywords

Reflection Coefficient Spontaneous Emission Mesh Point Transfer Matrix Method Surface Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yablonovitch, E., Gmitter, T.J. and Bhat, R., (1988)Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double hetero structure s Phys. Rev. Lett. 61, 2546–2549.ADSCrossRefGoogle Scholar
  2. 2.
    Leung, K.M. and Liu, Y.F. (1990)Full vector wave calculation of photonic band structures in Face-Centered-Cubic dielectric mediaPhys. Rev. Lett. 65, 2646- 2649.ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Z. and Satpathy, S. (1990)Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations Phys. Rev. Lett. 65, 2650–2653.ADSCrossRefGoogle Scholar
  4. 4.
    Ho, K.M., Chan, C.T. and Soukoulis, C.M. (1990)Existence of a photonic gap in periodic dielectric structures Phys. Rev. Lett. 65, 3152–3155.ADSCrossRefGoogle Scholar
  5. 5.
    Yablonovitch, E., Gmitter, T.J. and Leung, K.M. (1991)Photonic band structure: the Face-Centered-Cubic case employing nonspherical atoms Phys. Rev. Lett. 67, 2295–2298.ADSCrossRefGoogle Scholar
  6. 6.
    Snoeks, E., Lagendijk, A. and Polman, A. (1995)Measuring and modifying the spontaneous emission rate of Erbium near an interface Phys. Rev. Lett. 74, 2459–2462.ADSCrossRefGoogle Scholar
  7. 7.
    Khosravi, H. and Loudon, R. (1991)Vacuum field fluctuations and spontaneous emission in the vicinity of a dielectric surface Pro. R. Soc. Lond. A 433, 337–353.ADSCrossRefGoogle Scholar
  8. 8.
    Khosravi, H. and Loudon, R. (1992)Vacuum field fluctuations and spontaneous emission in a dielectric slab Pro. R. Soc. Lond. A 436, 373–389.ADSCrossRefGoogle Scholar
  9. 9.
    Joannopoulus, J.D. (1995)Minding the gap Nature 375, 278.CrossRefGoogle Scholar
  10. 10.
    Lagendijk, A. and van Tiggelen, B.A.Resonant Multiple Scattering of Light to appear in Physics Reports.Google Scholar
  11. 11.
    Sprik, R., Lagendijk, A. and van Tiggelen, B.A.Photonic band structures for atomic latticesto appear in Proceedings NATO Conference “Photonic Band Gap Materials”, June 1995, Crete, Greece.Google Scholar
  12. 12.
    Economou, E.N. (1983)Green’s Functions in Quantum Physics, Springer Berlin.Google Scholar
  13. 13.
    Pendry, J.B. and MacKinnon, A. (1992)Calculation of photon dispersion relations Phys. Rev. Lett. 69, 2772–2774.ADSCrossRefGoogle Scholar
  14. 14.
    Pendry, J.B. (1994)Photonic band structures J. Mod. Opt. 41, 209–229.ADSCrossRefGoogle Scholar
  15. 15.
    Bell, P.M., Pendry, J.B., Martin Moreno, L., and Ward, A.J. (1995)A program for calculating photonic band structures and transmission coefficients of complex structures Comp. Phys. Comm. 85, 306–322.ADSCrossRefGoogle Scholar
  16. 16.
    Loudon, R. (1983)The Quantum Theory of Light, Clarendon Press, Oxford.Google Scholar
  17. 17.
    Collin, R.E. (1991)Field Theory of Guided Waves, IEEE Press, New York.MATHGoogle Scholar
  18. 18.
    Robertson, W.M., Arjavalingam, G., Meade, R.D., Brommer, K.D., Rappe, A.M. and Joannopoulus, J.D. (1992)Measurement of photonic band structure in a two- dimensional periodic dieletric array Phys. Rev. Lett. 68, 2023–2026.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • F. Wijnands
    • 1
  • J. B. Pendry
    • 1
  • P. J. Roberts
    • 2
  • P. M. Bell
    • 1
  • L. Martín Moreno
    • 3
  • F. J. Garcia-Vidal
    • 1
  1. 1.Condensed Matter Theory Group, The Blackett LaboratoryImperial CollegeLondonUK
  2. 2.Defence Research AgencyGreat MalvernUK
  3. 3.Instituto de Ciencia de Materiales (Sede B)Universidad Autónoma de MadridMadridSpain

Personalised recommendations