The Opal-Semiconductor System as a Possible Photonic Bandgap Material

  • S. G. Romanov
  • C. M. Sotomayor Torres
Chapter
Part of the NATO ASI Series book series (NSSE, volume 324)

Abstract

We report on the preparation of 3-dimensional lattices of semiconductor and other materials (CdS, CdSe, InP, TiO2) mbedded in a dielectric matrix (opal) by a variety of techniques. These ensembles are examined by optical spectroscopy and are shown to posses both the characteristics of the matrix and of the saniconductor, the latter sometimes exhibiting quantum confinement. The semiconductor 3D arrays of dots or islands are found to preserve their crystalline character. Optical studies suggest these materials may be considered as possible candidates for partial 3D photonic bandgap materials operating in the visible range of the spectrum.

Keywords

Opal Matrix Photonic Bandgap Synthetic Opal Refractive Index Contrast Opal Void 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodden, W.O., Sotomayor Torres, C.M., Ironside, C.N., Cotter, D., and Girdlestone, H.P. (1991), Superlattices and Microstmctures 9, 421–426ADSCrossRefGoogle Scholar
  2. 2.
    Sotomayor Torres, C.M. (1992), in J.H. Davies and A.R. Long (eds.). Physics of Nanostructures, Inst Phys Publishing, Bristol, pp 205–227;Google Scholar
  3. Sotomayor Torres, C.M., Smart, A.P., Foad, M.A. and Wilkinson, C.D.W. (1992), Advances in Solid State Physics 32, 265–277CrossRefGoogle Scholar
  4. 3.
    see, for example, the various articles by N.N. Ledentsov, P. Petroff and K. Ploog since 1989.Google Scholar
  5. 4.
    see, for example, review articles in J. Optical Soc. America B 10 (1993)Google Scholar
  6. 5.
    Krauss, T., and De La Rue, R., (1996) to appear in proc. of the NATO-ASI on Photonic Bandgaps, Crete, June 1995; and paper in this volume.Google Scholar
  7. 6.
    Bryksin, V.V., Firsov, Yu.A., Ktitorov, S.A., (1981) Sol. Stat Commun. 39, 385; Bogomolov, V.N. and Ktitorov, S.A., to be published.ADSCrossRefGoogle Scholar
  8. 7.
    Bogomolov, V.N. (1978) Sov. Physics Uspehi, 21, 77ADSCrossRefGoogle Scholar
  9. 8.
    Srdanov, V.I., Blake, N.P., Markgraber, D., Metiu, H. and Stuky, G.D. (1994). in J.C. Jansen. (ed.) Advanced Zeolite Science and Application: Sudies in Surface Science and Catalysis, vol.85, Elsevier Science, 115; Vos, W.L., Sprik, R. and Blaaderen, A. (1995), submitted toJ.Appl.Phys.Google Scholar
  10. Vos, W.L., Sprik, R. and Blaaderen, A. (1995), submitted to J.Appl.Phys.Google Scholar
  11. 9.
    Romanov, S.G. (1993) J. Phys. Condensed Matter 5, 1081;ADSCrossRefGoogle Scholar
  12. Alekseev, Yu.A., Bogomolov, V.N., Zhukova, T.B., Petranovskii, V.P., Romanov, S.G., Khlodkevich, S.V.(1986) Izvestija Akad. Nauk, SSSK ser. flz.. 50, 418Google Scholar
  13. 10.
    Bogomolov, V.N., Poborchii, V.V., Romanov, S.G. and Shagin, S.I. (1985) Phys. C, 18, L313.ADSCrossRefGoogle Scholar
  14. Bogomolov, V.N., Kumzerov, Y. and Romanov, S.G. (1992)in J.H. Davies and A.R. Long (eds.). Physics of nanostructures, lOP, Brisid, Philadelphia;Google Scholar
  15. 11.
    Romanov, S.G. (1996) to appewr in J.W dtkamp, H G Karge, H Pfeiferand, W. Holdreich, (eds.) Zeolites and related materials:state of art, ElseiverGoogle Scholar
  16. 12.
    Balakirev, V., Bogomolov, V.N., Zhuravlev, V., Kumzerov, Y., Petranovskii, v., Romanov, S.G., Samoilovich, L. (1993) Kristallografia, 38, 111.Google Scholar
  17. 13.
    Bogomolov, V.N., Kumzerov, Y., Romanov, S.G. and Zhuravlev, V. (1993) Physica C, 371–384;Google Scholar
  18. 14.
    Romanov, S.G., Larkin, A.I. and Sotomayor Torres, C.M. to be published.Google Scholar
  19. 15.
    Sanders, J.V. (1964) Nature, 4964, 1151–1153ADSCrossRefGoogle Scholar
  20. 16.
    Yablanovich, E.(1994) J.Modem Optics, 41, 173ADSCrossRefGoogle Scholar
  21. 17.
    Cassagne, D., Jounin, C. and Bertho, D. (1995) Phys. Rev. B 52, 2217.ADSCrossRefGoogle Scholar
  22. 18.
    Cassagne, D. and Jounin, C., to be published.Google Scholar
  23. 19.
    Romanov, S.G., Fokin, A.V., Tretijakov, V.V., Butko, V.Y., Alperovidi, V.I., Johnson N.P. and Sotomayor Torres, CM. (1995) to appear in 7. Crystal Growth Google Scholar
  24. 20.
    Romanov, S.G., Yates, H.M., et al. to be publishedGoogle Scholar
  25. 21.
    Landholt-Bomstein Series (1982) Group III: Crystal and solid state physics.Google Scholar
  26. 22.
    Astratov, V.M., Bogomolov, V.N. and Kaplyanskii, A.A. (1995) Ext. Abstracts Int. Symp. on Nanostructures: Physics and technology, St Petersburg June 1995,184Google Scholar
  27. 23.
    Romanov, S.G., et al., to be published.Google Scholar
  28. 24.
    Aleskovskii, V.B. (1978) Solid State Chemistry. ’Visshaja shkola’, Moscow, [in Russian)Google Scholar
  29. 25.
    Porto, S.P.S., Fleury, P.A., and Damen, T.C. (1967)Phys. Rev. 154 522ADSCrossRefGoogle Scholar
  30. 26.
    Tang, H., Prasad, K, Sanjines, R., Schmid, P.E., Levy, F. (1994) J. Appl. Phys. 75, 2042.ADSCrossRefGoogle Scholar
  31. 27.
    Romanov, S.G., Fokin, A.V., Butko, V., Johnson, N.P., Sotomayor Torres, C.M. (1996) Three-dimensional active gratings for light emission control, to be published in MRS Proc. 406.Google Scholar
  32. 28.
    Romanov S.G., et al, to be publishedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • S. G. Romanov
    • 1
  • C. M. Sotomayor Torres
    • 1
  1. 1.Nanoelectronics Research Centre Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations