Photonic Atoms: Enhanced Light Coupling

  • A. Serpengüzel
  • S. Arnold
  • G. Griffel
Part of the NATO ASI Series book series (NSSE, volume 324)


Morphology Dependent Resonances of a microsphere, i.e., photonic atom, are excited by an optical fiber coupler, which is made out of a single mode optical fiber. As opposed to the more conventional plane wave illumination geometry, the illumination by an optical fiber coupler provides spatially selective and enhanced coupling of light into the Morphology Dependent Resonances of the microsphere. The observed spectra are in good agreement with the Generalized Lorenz-Mie Theory and the Localization Principle


Gaussian Beam Transverse Electric Angular Momentum Quantum Number Relative Refractive Index Optical Fiber Coupler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Barber and R.K. Chang, Eds., “Optical Effects Associated with Small Particles,” World Scientific, Singapore (1988).Google Scholar
  2. 2.
    E. Yablonovitch, “Inhibited Spontaneous Emission in Solid State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    C. M. Soukoulis, “Photonic Band Gaps and Localization,” Plenum Press, New York (1993).Google Scholar
  4. 4.
    S. Arnold, J. Comunale, W.B. Whitten, J.M. Ramsey, and K.A. Fuller, “Room Temperature Microparticle based Persistent Hole Burning Spectroscopy,” J. Opt. Soc. Am. B 9, 819 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    W. Hu, H. Li, B. Cheng, J. Yang, Z. Li, and D. Zhang, “Planar Optical Lattice of TiQz Particles,” Opt. Lett. 20, 964 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  7. 7.
    S. C. Ching, H. M. Lai, and K. Young, “Dielectric Microspheres as Optical Cavities: Thermal Spectrum and Density of States,” J. Opt. Soc. Am. B 4, 1995 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    S. C. Ching, H. M. Lai, and K. Young, “Dielectric Microspheres as Optical Cavities: Einstein A and B Coefficients and Level Shift,” J. Opt. Soc. Am. B 4, 2004 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    J. Z. Zhang, D. H. Leach, and R. K. Chang, “Photon Lifetime within a Droplet: Temporal Determination of Elastic and Stimulated Raman Scattering,” Opt. Lett. 13, 270 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and Near Field Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys. 64, 1632 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal Electric Energy in a Spherical Particle Illuminated with a Plane Wave or off-axis Gaussian Beam,” Appl. Opt. 33, 524 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Lock, and G. Gouesbet, “Rigorous Justification of the Localized Approximation to the Beam Shape Coefficients in Generalized Lorenz Mie Theory: II. on-axis Beams,” J. Opt. Soc. Am. A 11, 2503 (1994).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of Resonances of Microspheres on an Optical Fiber,” Opt. Lett. 20, 654 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    N. Dubreuil, J.C. Knight, D.K. Leventhai, V. Sandoghar, J. Hare, and V. Lefèvre, “Eroded Monomode Optical Fiber for Whispering Gallery Mode Excitation in a Fused Silica Microsphere,” Opt. Lett. 20, 813 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Knight, N. Dubreuil, V. Sandoghar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Mapping of Whispering Gallery Mode in Microspheres with a Near Field Probe,” Opt. Lett. 20, 1515 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    S. Arnold, S. Holler, J. H. Li, A. Serpengüzel, W. F. Auffermann, and S.C. Hill, “Aerosol Particle Microphotography and Glare Spot Absorption Spectroscopy,” Opt. Lett. 20, 773 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    H.C. van de Hulst, “Light Scattering by Small Particles,” Dover, New York, p. 208 (1981).Google Scholar
  18. 18.
    G. Gouesbet and J.A. Lock, “Rigorous Justification of the Localized Approximation to the Beam Shape Coefficients in Generalized Lorenz Mie Theory: II. off-axis Beams,” J. Opt Soc. Am. A 11, 2516 (1994).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    S. Arnold, C. T. Liu, W. B. Whitten and J. M. Ramsey, “Room Temperature Microparticle based Persistent Spectral Hole Burning Memory,” Opt. Lett. 16, 420 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    G. Griffel, A. Serpengüzel, and S. Arnold, “Quenching of Semiconductor Lasers Linewidth by Detuned Loading using Spherical Cavities Morphology Dependent Resonances,” Proceedings of the Institute of Electrical and Electronics Engineers: Frequency Control Conference, San Francisco, California, USA (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Serpengüzel
    • 1
  • S. Arnold
    • 2
  • G. Griffel
    • 3
  1. 1.Physics DepartmentBilkent UniversityBilkenTurkey
  2. 2.Microparticle Photophysics Laboratory(MP3L)Polytechnic UniversityBrooklynUSA
  3. 3.Department of Electrical EngineeringPolytechnic UniversityBrooklynUSA

Personalised recommendations