Skip to main content

InAs Quantum Boxes: Active Probes For Air/GaAs Photonic Bandgap Microstructures

  • Chapter
Microcavities and Photonic Bandgaps: Physics and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 324))

  • 459 Accesses

Abstract

Important technological efforts have been made in the last five years for implementing the concept of photonic bandgap (PBG) crystals [1] in the optical frequency range. Air/semiconductor crystals are very attractive in view of a monolithic integration in optoelectronic integrated circuits (OEICs), because their large modulation of the refractive index potentially allows to obtain large PBGs for each or eventually both polarizations of light. In order to display a PBG in the near-infrared, the period P of such crystals must however be scaled down to submicron sizes. Photonic properties are very sensitive to the porosity of the crystal as well as to some details of its pattern, which makes the demands in terms of regularity and uniformity difficult to satisfy even for state of the art microfabrication techniques. For instance, the dry etching in a single step of 3D [2] or 2D [3–5] PBG crystals illustrates the current limits of etching techniques: the deviations from a perfect anisotropy limit the depth of good quality crystals to typically 1 µm. Concerning alternative approaches now, the electrochemical etching of deep 2D crystals, which is very successful in the mid-infrared (P≈8 µm) [6], might prove difficult to implement in the near-infrared due to the thinness of the semiconductor sidewalls. Finally, imperfect mask alignment will also plague planar period by period fabrication of 3D PBG crystals [7]. Hopefully, thin 2D PBG crystals are in principle sufficient for most potential applications of PBG crystals in OEICs. Hybrid 3D microcavities formed by a 2D PBG crystal sandwiched by two bragg mirrors have also been proposed as a route toward full spontaneous emission control [3]. The structural quality of thin 2D PBG crystals fabricated by electron-beam lithography and reactive ion etching [3,5] is presumably already good enough to test these proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yablonovitch E. (1987) Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059

    Article  ADS  Google Scholar 

  2. Yablonovitch E. (1993) Photonic bandgap structures, J. Opt. Soc. Am. B10, 283; see also the contribution of V. Arbet et al in this volume.

    ADS  Google Scholar 

  3. Gérard J.M., Izraël A., Marzin J.Y., Padjen R. and Ladan F.R. (1994) Photonic bandgap of two-dimensional dielectric crystals, Solid State Electronics 37, 1341

    Article  Google Scholar 

  4. Gourley P.L., Wendt J.R., Vawter G.A., Brennan T.M., Hammons B.E. (1994) Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors, Appi. Phys. Lett. 64, 687

    Article  ADS  Google Scholar 

  5. Krauss T., Song Y.P., Thoms S., Wilkinson C.D.W., De La Rue R.M. (1994) Fabrication of 2D photonic bandgap structures in GaAs/GaAlAs, Electronics Lett. 30, 1444

    Article  Google Scholar 

  6. Grüning U., Lehmann V., Engelhart C.M. (1995) Two-dimensional infrared photonic bandgap structures based on porous silicon, Appi. Phys. Lett. 66, 3254

    Article  ADS  Google Scholar 

  7. Fan S., Villeneuve P.R., Meade R.D. and J.D. Joannopoulos (1994) Design of 3D photonic crystals at submicron wavelengths, Appi. Phys. Lett. 65, 1466

    Article  ADS  Google Scholar 

  8. see e.g. the contribution of P. Russel in this volume.

    Google Scholar 

  9. Robertson W.M., Aijavalingam G., Meade R.D., Brommer K.D., Rappe A.M. and Joannopoulos J.D. (1992) Measurement of photonic band structure in a 2D periodic dielectric array, Phys. Rev. Lett. 68, 2023

    Article  ADS  Google Scholar 

  10. De La Rue R.M. and Krauss T., in this volume.

    Google Scholar 

  11. Marzin J.Y., Izraël A. and Birotheau L. (1994) Optical properties of etched GaAs/GaAlAs quantum wires and dots, Solid State Electronics 37, 1091

    Article  ADS  Google Scholar 

  12. Goldstein L., Glas F., Marzin J.Y., Charasse M.N. and Le Roux G. (1985) Growth by MBE and characterization of InAs/GaAs strained-layer superlattices, Appi Phys. Lett. 47, 1099

    Article  ADS  Google Scholar 

  13. Moison J.M., Houzay F., Barthe F., Leprince L., André E. and Vatel O. (1994) Self-organized growth of regular nanometer scale InAs dots on GaAs, Appi. Phys. Lett. 64, 196

    Article  ADS  Google Scholar 

  14. Leonard D., Pond K. and Petroff P.M. (1994) Critical layer thickness for self-assembled InAs islands on GaAs, Phys. Rev. B 50, 11687

    Article  ADS  Google Scholar 

  15. Marzin J.Y., Gérard J.M., Izraël A., Barrier D. and Bastard G. (1994) PL of single InAs quantum dots obtained by self-organized growth on GaAs, Phys. Rev. Lett. 73, 716

    Article  ADS  Google Scholar 

  16. Grundmann M. et al (1995) Ultranarrow luminescence lines from single quantum dots, Phys. Rev. Lett. 74, 4043

    Article  ADS  Google Scholar 

  17. Nirmal M., Murray C.B. and Bawendi M.G. (1994) Phys. Rev. B 50, 2293

    Article  ADS  Google Scholar 

  18. Gérard J.M., Marzin J.Y., Zimmermann G., Ponchet A., Cabrol O., Barrier D., Jusserand B., Sermage B. (1996) InAs/GaAs quantum boxes obtained by self-organized growth: intrinsic electronic properties and applications, to appear in Solid State Electronics (proceedings MSS7)

    Google Scholar 

  19. Hunt N.E.J., Vredenberg A.M., Schubert E.F., Becker P.C., Jacobson D.C., Poate J.M. and Zydzik G.J. (1995) Spontaneous emission control in planar structures: Er in Si/Si02 microcavities, in Burstein E. and Weisbuch C. eds Confined electrons and photons, NATO ASI series B340, 715.

    Google Scholar 

  20. See also Vredenberg et al, Phys. Rev. Lett. 71, 517 ( 1993 ).

    Article  ADS  Google Scholar 

  21. Rigneault H., in this volume

    Google Scholar 

  22. Gérard J.M. and Weisbuch C., french patent n°9000229 (1990)

    Google Scholar 

  23. Gérard J.M., Génin J.B., Lefebvre J., Moison J.M., Lebouché N. and Barthe F. (1995) Optical investigation of the self-organized growth of InAs/GaAs quantum boxes, J. Crystal Growth 150, 351

    Article  Google Scholar 

  24. Kastler A. (1962) Atomes à l’intérieur d’un interféromètre Pérot-Fabry, Applied Optics 1, 17

    Article  ADS  Google Scholar 

  25. Yokohama H., Nishi K., Anan T., Nambu Y., Brorson S.D., Ippen E.P., Suzuki M. (1992) Controlling spontaneous emission and thresholdless laser oscillation with optical microcavities, Optical and Quantum Electronics 24, S245

    Article  Google Scholar 

  26. Björk G., Machida S., Yamamoto Y., Igeta K. (1991) Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev. B 44, 669

    ADS  Google Scholar 

  27. Jewell J.L., Scherer A., McCall S.L., Lee Y.H., Walker S., Harbison J.P., Florez L.T. (1989) Low-threshold electrically pumped vertical cavity surface emitting microlasers, Electronics Letters 25, 1123

    Article  Google Scholar 

  28. Raj R., Oudar J.L., Bensoussan M. (1994) Vertical cavity amplifying photonic switch, Appl. Phys. Lett. 65, 2359

    Article  ADS  Google Scholar 

  29. Jewell J.L., Mc Call S.L., Scherer A., Houh H.H., Whitaker N.A., Gossard A.C. and English J.H. (1989) Transverse modes, waveguide dispersion and 30 ps recovery in submicron GaAs/AlAs microresonators, Appl. Phys. Lett. 55, 22

    Article  ADS  Google Scholar 

  30. Rivera T., Ladan F.R., Izrael A., Azoulay R., Kuszelewicz R. and J.L. Oudar (1994) Reduced threshold all-optical bistability in etched quantum well microresonators, Appl. Phys. Lett. 64, 869

    Article  ADS  Google Scholar 

  31. Baba T., Hamano T., Koyama F. (1991) Spontaneous emission factor of a microcavity DBR surface emitting laser, IEEE J. Quantum. Elec. 27, 1347

    Article  ADS  Google Scholar 

  32. Yariv A. (1991) Optical Electronics, Saunders College Publications, San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gerard, J.M., Barrier, D., Marzin, J.Y. (1996). InAs Quantum Boxes: Active Probes For Air/GaAs Photonic Bandgap Microstructures. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics