Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 324))

Abstract

It is now widely recognised that a volume of dielectric material with an appropriately designed periodic microstructure — a photonic crystal — will support a full three-dimensional photonic band gap (PBG) [1]. Over the frequency range spanned by the PBG, all electromagnetic modes are suppressed within the volume, allowing a single resonance (or photonic state) to be introduced by means of a structural point defect [2]. This unique ability to tamper strongly with the electromagnetic mode density enables the channelling of spontaneous emission into one or a few electromagnetic modes, and is attractive for enhancing the emission rate from light emitting diodes, and in achieving low threshold highly efficient operation in micro-cavity lasers [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, “Photonic band gap structures,” J. Opt. Soc. Am. B 10 (283–295) 1993

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, T.J. Gmitter, R.D. Meade, A.M. Rappe, K.D. Brommer and J.D. Joannopolous, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67 (3380–3383) 1991

    Article  ADS  Google Scholar 

  3. See section entitled “Confined Photons” in Confined Electrons and Photons: New Physics and Applications Eds: E. Burstein and C. Weisbuch, (Plenum Press 1995), pp 383–646

    Google Scholar 

  4. P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46(4649–4972) 1992

    Google Scholar 

  5. T. Krauss, Y.P. Song, S. Thomas, C.D.W. Wilkinson and R.M. DeLaRue, “Fabrication of 2-D photonic band gap structures in GaAs/AlGaAs,” Electron. Lett. 30 (1444–1446) 1994

    Article  Google Scholar 

  6. K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi and J.W. Haus, “Fabrication of a two-dimensional photonic band structure with near-infrared band gap,” Jpn.J.Appl.Phys. 33(L1463–L1465) 1994

    Article  ADS  Google Scholar 

  7. A.A. Maradudin and A.R. McGurn, “Photonic band structure of a truncated, two- dimensional, periodic dielectric medium,” J. Opt. Soc. Am. 10(307–313) 1993

    Article  ADS  Google Scholar 

  8. See, e.g., Y. Yamamoto and R.E. Slusher, “Optical processes in microcavities,” Physics Today 46 (66–73) 1993

    Article  Google Scholar 

  9. See, e.g., A. Yariv, Optical Electronics, 4th edition (Harcourt Brace College Publishers, Fort Worth, 1991)

    Google Scholar 

  10. H. Kogelnik, “Theory of Optical Waveguides,” in Guided-Wave Optoelectronics, Ed: T. Tamir (Springer-Verlag Berlin Heidelberg 1988 & 1990)

    Google Scholar 

  11. D.M. Atkin, P.St.J. Russell, T.A. Birks & P.J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” to be published in J. Mod. Opt., 1996

    Google Scholar 

  12. P.St.J. Russell, T.A. Birks and F.D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons: New Physics and Applications, Eds: E. Burstein and C. Weisbuch, (Plenum Press 1995), pp 585–633

    Google Scholar 

  13. P. Yeh, A. Yariv and C. S. Hong, “Electromagnetic propagation in periodic stratified media: I & II,” J. Opt. Soc. Am. 67 (423–448) 1977

    Article  ADS  Google Scholar 

  14. J.B. Pendry, “Photonic band structures,” J.Mod.Opt. 41 (209–229) 1994

    Article  ADS  Google Scholar 

  15. T.A. Birks, P.J. Roberts, P.St.J. Russell, D.M. Atkin and T.J. Shepherd, “Full 2-D photonic band gaps in silica/air structures,” Electron. Lett. 31 (1941–1942) 1996

    Article  Google Scholar 

  16. P.J. Roberts, T.A. Birks, P.St.J. Russell, T.J. Shepherd and D.M. Atkin, “Two- dimensional photonic band-gap structures as quasi-metals,” to be published in Opt. Lett., 1996

    Google Scholar 

  17. P.St.J. Russell and T.A. Birks, “Bloch wave optics in photonic crystals: Physics and applications,” in Photonic Band Gap Materials, Editor C.M. Soukoulis, (Kluwer Academic, to be published 1996)

    Google Scholar 

  18. U. Grüning, V. Lehmann and C.M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66 (3254–3256) 1995

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Russell, P.S.J., Atkin, D.M., Birks, T.A., Roberts, P.J. (1996). Bound Modes of Two-Dimensional Photonic Crystal Waveguides. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics